10-01-2024, 22:01
WENTYLATOR
Na wielu forach w postach dotyczących zasilacza QJ-1830SC pojawiają się uwagi jego użytkowników dotyczące denerwującego włączania się wentylatora i związanego tym hałasu podczas pracy z małym poborem mocy (np. podczas pracy trx-a w trybie odbioru).
U mnie również występowało to zjawisko. W związku z tym postanowiłem dokonać prostej modyfikacji opisanej na mods.dk. Polega ona na wlutowaniu diody zenera równolegle do termostatu bimetalicznego zainstalowanego na radiatorze do którego przykręcone są tranzystory mocy wykorzystywane w zasilaczu. Przed modyfikacją po przekroczeniu temperatury zadziałania termostatu i zwarciu jego styków następowało podanie napięcia 12V (z układu 7812) na wentylator. Schładzał on cały układ (radiator+ termostat) do momentu przy którym następuje rozwarcie styków i wyłączenie wentylatora. Wentylator pracował w trybie przerywanym. Po modyfikacji wentylator działa w sposób ciągły. W sytuacji gdy styki termostatu są rozwarte na wentylator podawane jest obniżone napięcie (12V minus napięcie spolaryzowanej zaporowo diody zenera w moim przypadku 12V – 6,2V). Przy obniżonym napięciu wentylator pracuje cicho z akceptowalnym poziomem hałasu. Gdy temperatura układu zaczyna rosnąć (np. nadawanie) następuje zwarcie termostatu i podanie 12V na wentylator, zaczyna on pracować z pełna mocą. Przy odbiorze (pobór prądu ok. 4A) wentylator nie wchodzi w tryb pełnej mocy.
Zastosowałem diodę zenera 6,2V/5W. W trakcie pracy robi się ona ciepła (ale nie gorąca). Żeby nie podgrzewać czujnika i wpływać na jego działanie jej doprowadzenia zostały wygięte w połowie długości w kształt litery „U” a następnie bez skracania przylutowane bezpośrednio do termostatu. Tworzą radiator oprowadzający ciepło wytwarzane prze diodę.
Ponadto na tym etapie prac:
po stronie pierwotnej transformatora: wymieniłem rezystor przy zielonej diodzie LED obok wyłącznika na 75 kOm (było 150 kOm??) - dioda zaczęła świecić po włączeniu zasilacza, dolutowałem (na zasadzie, że „nie zaszkodzi” ..): na włączniku zasilania kondensator 10nF/3kV, którego nie było (jest na schemacie z internetu, równolegle do uzwojenia pierwotnego), kondensatory 10nF+0,1uF do kondensatorów elektrolitycznych (8x4700uF) po mostku prostowniczym (od strony druku) i na wyjściu zasilacza bezpośrednio na zaciskach. Był tam już kondensator elektrolityczny i rezystor obciążający wstępnie wyjście zasilacza.
Załączam pliki:
znaleziony gdzieś w internecie schemat zasilacza QJ-1830SC. Dotyczy jednak jak mi się wydaje starszej jego wersji (2010 r.) o której na jakimś forum przeczytałem, że to „chińskie badziewie z prostownikiem zrobionym z pęczka diod”. W moim zasilaczu nie ma już transformatora z dzielonym uzwojeniem wtórnym - zastosowano 35A mostek prostowniczy, prostownik dla regulatora napięcia na układzie LM324 jest jednopołówkowy (uwaga na błędnie ponumerowane wyprowadzenia układu LM324 na schemacie). Na radiatorze z 6+1 tranzystorami mocy zainstalowany jest układ 7812, który dostarcza 12V dla wentylatora. Amperomierz i woltomierz mają jakieś potencjometry regulacyjne. Ponieważ mój zasilacz jest sprawny nie analizowałem dokładnie zgodności i różnic tego schematu z posiadanym urządzeniem.
Schemat z załączonego pliku zawierający dodatkowo dorysowane zauważone różnice i zmiany, które wykonałem po modyfikacji termostatu.
Zdjęcia zasilacza po zdjęciu obudowy (na jednym z nich widoczny zabłąkany tyrystor przymierzany do układu CROWBAR), zdjęcia z modyfikacjami w tym z modyfikacją termostatu.
Na wielu forach w postach dotyczących zasilacza QJ-1830SC pojawiają się uwagi jego użytkowników dotyczące denerwującego włączania się wentylatora i związanego tym hałasu podczas pracy z małym poborem mocy (np. podczas pracy trx-a w trybie odbioru).
U mnie również występowało to zjawisko. W związku z tym postanowiłem dokonać prostej modyfikacji opisanej na mods.dk. Polega ona na wlutowaniu diody zenera równolegle do termostatu bimetalicznego zainstalowanego na radiatorze do którego przykręcone są tranzystory mocy wykorzystywane w zasilaczu. Przed modyfikacją po przekroczeniu temperatury zadziałania termostatu i zwarciu jego styków następowało podanie napięcia 12V (z układu 7812) na wentylator. Schładzał on cały układ (radiator+ termostat) do momentu przy którym następuje rozwarcie styków i wyłączenie wentylatora. Wentylator pracował w trybie przerywanym. Po modyfikacji wentylator działa w sposób ciągły. W sytuacji gdy styki termostatu są rozwarte na wentylator podawane jest obniżone napięcie (12V minus napięcie spolaryzowanej zaporowo diody zenera w moim przypadku 12V – 6,2V). Przy obniżonym napięciu wentylator pracuje cicho z akceptowalnym poziomem hałasu. Gdy temperatura układu zaczyna rosnąć (np. nadawanie) następuje zwarcie termostatu i podanie 12V na wentylator, zaczyna on pracować z pełna mocą. Przy odbiorze (pobór prądu ok. 4A) wentylator nie wchodzi w tryb pełnej mocy.
Zastosowałem diodę zenera 6,2V/5W. W trakcie pracy robi się ona ciepła (ale nie gorąca). Żeby nie podgrzewać czujnika i wpływać na jego działanie jej doprowadzenia zostały wygięte w połowie długości w kształt litery „U” a następnie bez skracania przylutowane bezpośrednio do termostatu. Tworzą radiator oprowadzający ciepło wytwarzane prze diodę.
Ponadto na tym etapie prac:
po stronie pierwotnej transformatora: wymieniłem rezystor przy zielonej diodzie LED obok wyłącznika na 75 kOm (było 150 kOm??) - dioda zaczęła świecić po włączeniu zasilacza, dolutowałem (na zasadzie, że „nie zaszkodzi” ..): na włączniku zasilania kondensator 10nF/3kV, którego nie było (jest na schemacie z internetu, równolegle do uzwojenia pierwotnego), kondensatory 10nF+0,1uF do kondensatorów elektrolitycznych (8x4700uF) po mostku prostowniczym (od strony druku) i na wyjściu zasilacza bezpośrednio na zaciskach. Był tam już kondensator elektrolityczny i rezystor obciążający wstępnie wyjście zasilacza.
Załączam pliki:
znaleziony gdzieś w internecie schemat zasilacza QJ-1830SC. Dotyczy jednak jak mi się wydaje starszej jego wersji (2010 r.) o której na jakimś forum przeczytałem, że to „chińskie badziewie z prostownikiem zrobionym z pęczka diod”. W moim zasilaczu nie ma już transformatora z dzielonym uzwojeniem wtórnym - zastosowano 35A mostek prostowniczy, prostownik dla regulatora napięcia na układzie LM324 jest jednopołówkowy (uwaga na błędnie ponumerowane wyprowadzenia układu LM324 na schemacie). Na radiatorze z 6+1 tranzystorami mocy zainstalowany jest układ 7812, który dostarcza 12V dla wentylatora. Amperomierz i woltomierz mają jakieś potencjometry regulacyjne. Ponieważ mój zasilacz jest sprawny nie analizowałem dokładnie zgodności i różnic tego schematu z posiadanym urządzeniem.
Schemat z załączonego pliku zawierający dodatkowo dorysowane zauważone różnice i zmiany, które wykonałem po modyfikacji termostatu.
Zdjęcia zasilacza po zdjęciu obudowy (na jednym z nich widoczny zabłąkany tyrystor przymierzany do układu CROWBAR), zdjęcia z modyfikacjami w tym z modyfikacją termostatu.
[attachment=18630][attachment=18631][attachment=18632][attachment=18633][attachment=18634][attachment=18635][attachment=18636][attachment=18637]
UKŁAD CROWBAR i DODATKI
Parę miesięcy na giełdzie sprzętu krótkofalowego zamieszczono ogłoszenie o mniej więcej takiej treści: „sprzedam niesprawny zasilacz wraz transceiverem który uległ uszkodzeniu w wyniku jego awarii” (..szybko znalazł się nabywca, cena była atrakcyjna..). Gdy przejrzeć fora radioamatorów okazuje się, że takie przypadki nie są odosobnione. Ich powodem jest brak zabezpieczenia przed pojawieniem się wysokiego napięcia na wyjściu zasilacza w przypadku jego awarii. Na wyjściu może pojawić się wówczas napięcie zza mostka prostowniczego, ok. 24V lub więcej.
Ponieważ jestem użytkownikiem zasilacza QJ-1830SC, który jak wiele innych nie ma zabezpieczenia przed taką sytuacją, postanowiłem wyposażyć go w prosty układ CROWBAR dołączony do wyjścia. Układ został zmontowany na jednostronnej płytce uniwersalnej o rastrze 5,08 mm kupionej parę lat temu w CONRADZIE (conrad.pl). Są w TME.
Zabezpieczenie działa w następujący sposób: w przypadku wzrostu napięcia na wyjściu zasilacza (awaria) o ok. 0,6-0,7V powyżej napięcia przebicia diody zenera (w przypadku braku rezystora w bramce tyrystora) płynący prąd aktywuje tyrystor, który zwiera wyjście zasilacza i powoduje przepalenie bezpiecznika znajdującego się przed układem CROWBAR. Jeżeli zastosujemy rezystor w bramce tyrystora (R2 na rysunku) możemy podwyższyć napięcie zadziałania układu z daną diodą (spotykana wartość w układach od kilku do kilkuset omów). Ja z kilku diod zenera 16V/5W znalazłem taką której napięcie przebicia wynosi 16,1V (pozostałe miały ok. 15,5V) i rezystor widoczny na projekcie płytki zastąpiłem zworką. Mój układ aktywuje się przy ok. 16,8V (maks. napięcie wyjściowe zasilacza15,9V). Przed podłączeniem do zasilacza układ był testowany przy użyciu zasilacza z regulowanym napięciem i ograniczeniem prądowym. Przy jego użyciu testowałem również diody zenera.
Płytka układu CROWBAR razem z tyrystorem została przymocowana do dolnej części obudowy zasilacza, wykorzystałem istniejące otwory. Tyrystor CLA100E1200HB przykręcony został bezpośrednio „na paście termoprzewodzącej" z mikową przekładką. Do mocowania płytki z elementami użyłem 5 mm plastikowej tulejki dystansowej, która zapewnia odstęp od blaszanej obudowy. Montaż układu należy zacząć od odpowiedniego wygięcia wyprowadzeń tyrystora i połączenia go z płytką, tak aby pasowały do siebie wszystkie otwory. Elektrody tyrystora zostały podłączone grubym przewodem do „zapalniczkowego” gniazda zasilacza.
Ponieważ transformator jest najważniejszym i najtrudniejszym do naprawy elementem zasilacza i tylko jego można skutecznie ochraniać przy pomocy tak powolnych zabezpieczeń jak bezpieczniki topikowe, na jego uzwojeniach wtórnych w oprawkach montowanych na przewodach zainstalowałem bezpieczniki: samochodowy 30A na uzwojeniu „głównym” i szybki 200mA (przy 32A płynie prze niego ok. 160mA) na dodatkowym uzwojeniu dla układu regulacji na LM324. Bezpiecznik 30A powinien przepalić się w przypadku uszkodzenia zasilacza i zadziałania układu CROWBAR. Uzwojenie pierwotne jest zabezpieczone bezpiecznikiem fabrycznie.
Są opinie, że tyrystor z układu CROWBAR w celu ochrony sprawnych elementów zasilacza przed przeciążeniem powinien w trakcie awarii zwierać układ za mostkiem prostowniczym. Ja jednak wyznaję pogląd, że CROWBAR zwierający wyjście zasilacza w przypadku pojawienia się wysokiego napięcia na jego zaciskach chroni nie tylko wszystkie urządzenia do niego podłączone, ale chroni również sprawny zasilacz w przypadku wzrostu napięcia pochodzącego od zasilanych urządzeń lub innych do nich podłączonych (np. wzmacniaczy mocy.. ale raczej tranzystorowych.. od 3KV uchronić będzie się trudno..).
Po podłączeniu układu CROWBAR do wyjścia zasilacza okazało się, że podczas włączania zasilacza aktywuje się on, zwiera wyjście i powoduje zadziałanie układu zabezpieczającego przed zwarciem w który wyposażony jest zasilacz (w QJ-1830SC można „bezkarnie” zwierać wyjście co powoduje spadek napięcia i prądu do ok. zera). Okazało się (oscyloskop), że w momencie włączenia zasilacz generuje „pik” na wyjściu dochodzący do 20V, co powodowało zadziałanie układu CROWBAR. Problemu nie rozwiązał zainstalowany na wyjściu transil 5KP14A (to taka mało precyzyjna dioda zenera z dużym rozrzutem napięcia przebicia - oznaczenie sugeruje 14V, która w impulsie może przenosić duże moce). Z kilku jednego typu przy pomocy zasilacza regulowanego z ograniczeniem prądu dobrałem taki, który zaczynał przewodzić przy napięciu ok. 16,8V (trochę powyżej zadziałania układu CROWBAR). Pomimo to zostawiłem go jako element zabezpieczający przed szybkimi przepięciami o dużej amplitudzie, które mogą pochodzić również od zasilanych urządzeń, nie zaszkodzi. Zjawisko to potwierdziło jednak, że układ CROWBAR działa poprawnie.
Bezsensowne wydawało mi się podwyższanie napięcia zadziałania układu zabezpieczającego (wymiana diody lub rezystorem w bramce tyrystora) do poziomu przy którym nie będzie się aktywować podczas włączania zasilacza, postanowiłem wykonać dodatkowy układ miękkiego startu. O czym wkrótce.
[attachment=18651][attachment=18652][attachment=18653][attachment=18654][attachment=18655]Ponieważ jestem użytkownikiem zasilacza QJ-1830SC, który jak wiele innych nie ma zabezpieczenia przed taką sytuacją, postanowiłem wyposażyć go w prosty układ CROWBAR dołączony do wyjścia. Układ został zmontowany na jednostronnej płytce uniwersalnej o rastrze 5,08 mm kupionej parę lat temu w CONRADZIE (conrad.pl). Są w TME.
Zabezpieczenie działa w następujący sposób: w przypadku wzrostu napięcia na wyjściu zasilacza (awaria) o ok. 0,6-0,7V powyżej napięcia przebicia diody zenera (w przypadku braku rezystora w bramce tyrystora) płynący prąd aktywuje tyrystor, który zwiera wyjście zasilacza i powoduje przepalenie bezpiecznika znajdującego się przed układem CROWBAR. Jeżeli zastosujemy rezystor w bramce tyrystora (R2 na rysunku) możemy podwyższyć napięcie zadziałania układu z daną diodą (spotykana wartość w układach od kilku do kilkuset omów). Ja z kilku diod zenera 16V/5W znalazłem taką której napięcie przebicia wynosi 16,1V (pozostałe miały ok. 15,5V) i rezystor widoczny na projekcie płytki zastąpiłem zworką. Mój układ aktywuje się przy ok. 16,8V (maks. napięcie wyjściowe zasilacza15,9V). Przed podłączeniem do zasilacza układ był testowany przy użyciu zasilacza z regulowanym napięciem i ograniczeniem prądowym. Przy jego użyciu testowałem również diody zenera.
Płytka układu CROWBAR razem z tyrystorem została przymocowana do dolnej części obudowy zasilacza, wykorzystałem istniejące otwory. Tyrystor CLA100E1200HB przykręcony został bezpośrednio „na paście termoprzewodzącej" z mikową przekładką. Do mocowania płytki z elementami użyłem 5 mm plastikowej tulejki dystansowej, która zapewnia odstęp od blaszanej obudowy. Montaż układu należy zacząć od odpowiedniego wygięcia wyprowadzeń tyrystora i połączenia go z płytką, tak aby pasowały do siebie wszystkie otwory. Elektrody tyrystora zostały podłączone grubym przewodem do „zapalniczkowego” gniazda zasilacza.
Ponieważ transformator jest najważniejszym i najtrudniejszym do naprawy elementem zasilacza i tylko jego można skutecznie ochraniać przy pomocy tak powolnych zabezpieczeń jak bezpieczniki topikowe, na jego uzwojeniach wtórnych w oprawkach montowanych na przewodach zainstalowałem bezpieczniki: samochodowy 30A na uzwojeniu „głównym” i szybki 200mA (przy 32A płynie prze niego ok. 160mA) na dodatkowym uzwojeniu dla układu regulacji na LM324. Bezpiecznik 30A powinien przepalić się w przypadku uszkodzenia zasilacza i zadziałania układu CROWBAR. Uzwojenie pierwotne jest zabezpieczone bezpiecznikiem fabrycznie.
Są opinie, że tyrystor z układu CROWBAR w celu ochrony sprawnych elementów zasilacza przed przeciążeniem powinien w trakcie awarii zwierać układ za mostkiem prostowniczym. Ja jednak wyznaję pogląd, że CROWBAR zwierający wyjście zasilacza w przypadku pojawienia się wysokiego napięcia na jego zaciskach chroni nie tylko wszystkie urządzenia do niego podłączone, ale chroni również sprawny zasilacz w przypadku wzrostu napięcia pochodzącego od zasilanych urządzeń lub innych do nich podłączonych (np. wzmacniaczy mocy.. ale raczej tranzystorowych.. od 3KV uchronić będzie się trudno..).
Po podłączeniu układu CROWBAR do wyjścia zasilacza okazało się, że podczas włączania zasilacza aktywuje się on, zwiera wyjście i powoduje zadziałanie układu zabezpieczającego przed zwarciem w który wyposażony jest zasilacz (w QJ-1830SC można „bezkarnie” zwierać wyjście co powoduje spadek napięcia i prądu do ok. zera). Okazało się (oscyloskop), że w momencie włączenia zasilacz generuje „pik” na wyjściu dochodzący do 20V, co powodowało zadziałanie układu CROWBAR. Problemu nie rozwiązał zainstalowany na wyjściu transil 5KP14A (to taka mało precyzyjna dioda zenera z dużym rozrzutem napięcia przebicia - oznaczenie sugeruje 14V, która w impulsie może przenosić duże moce). Z kilku jednego typu przy pomocy zasilacza regulowanego z ograniczeniem prądu dobrałem taki, który zaczynał przewodzić przy napięciu ok. 16,8V (trochę powyżej zadziałania układu CROWBAR). Pomimo to zostawiłem go jako element zabezpieczający przed szybkimi przepięciami o dużej amplitudzie, które mogą pochodzić również od zasilanych urządzeń, nie zaszkodzi. Zjawisko to potwierdziło jednak, że układ CROWBAR działa poprawnie.
Bezsensowne wydawało mi się podwyższanie napięcia zadziałania układu zabezpieczającego (wymiana diody lub rezystorem w bramce tyrystora) do poziomu przy którym nie będzie się aktywować podczas włączania zasilacza, postanowiłem wykonać dodatkowy układ miękkiego startu. O czym wkrótce.
Z jakiś powodów nie mogę przeprowadzić pełnej edycji posta, może ktoś wie dlaczego?? Szybka edycja działa.
[attachment=18656]