Zdaje się, że wkroczyłem na grząski grunt bo zarówno z punktu widzenia oprogramowania jak i fizycznej budowy ostatniej części miernika zaczęły się piętrzyć problemy. Niemniej rozwiązałem podstawowy problem dotyczący przetwarzania danych z pomiaru. Dla uzyskania jako takiej dokładności zdecydowałem się ostatecznie na pośrednią częstotliwość około 32MHz z filtrowaniem za pomocą drabinkowego filtra kwarcowego. Schemat i układ pomiarowy mieszacza zamieszczam na zdjęciu i rysunku. Układy zostały wstępnie zmontowane dla sprawdzenia koncepcji i na razie nie były optymalizowane stąd wyniki na razie jeszcze skromne.
Algorytm pomiaru zakłada przemiatanie z krokiem równym szerokości pośredniej (ok. 2kHz) co przy 128 punktach na wykresie daje natywne pasmo przemiatania ok. 256 kHz. Im szersze pasmo przemiatania tym więcej pomiarów wykonuje system dla jednego punktu na wykresie. Przykładowo dla pasma przemiatania 10MHz system wykonuje 128*2^6 (8192) pomiarów a jeden punkt na wykresie powstaje z analizy 64 pomiarów w otoczeniu częstotliwości środkowej - wybierany jest pomiar o maksymalnej wartości i na wykresie odpowiada mu jedna pionowa linia.
W ten sposób system pomiarowy nie pominie żadnej częstotliwości w paśmie przemiatania. Przez to możliwy jest taki wynik jak na załączonym zdjęciu gdzie widać 8 prążków, które są nieparzystymi harmonicznymi sygnału prostokątnego o częstotliwości 0.75MHz. Najwyższy prążek to oczywiście sygnał podstawowy (0.75MHz) a ósmy prążek to 15-ta harmoniczna (11.25MHz). Zgrubna analiza wysokości prążków potwierdza, że maleją one zgodnie z regułą 1/n w stosunku do sygnału pierwszej harmonicznej gdzie n to rząd nieparzystej harmonicznej. Pasmo przemiatania w tym przypadku to 0.5-12.5MHz i jak widać pomiędzy nieparzystymi harmonicznymi nie ma prążków parzystych (a przynajmniej w tej skali dokładności) jak powinno być dla sygnału prostokątnego. Na razie mam problem z czułością pomiaru (tu mierzony sygnał ma wartość pp 5V) i muszę popracować nad lepszym zobrazowaniem wyniku bo zaczyna mnie spowalniać wyświetlacz. Im więcej ciemnego pola tym wolniej działa pomiar. Dla pasma 30MHz przemiatanie trwa do 10 sek. W paśmie ok. 1 MHz pomiar trwa ok. 1 sek.
L.J.
Algorytm pomiaru zakłada przemiatanie z krokiem równym szerokości pośredniej (ok. 2kHz) co przy 128 punktach na wykresie daje natywne pasmo przemiatania ok. 256 kHz. Im szersze pasmo przemiatania tym więcej pomiarów wykonuje system dla jednego punktu na wykresie. Przykładowo dla pasma przemiatania 10MHz system wykonuje 128*2^6 (8192) pomiarów a jeden punkt na wykresie powstaje z analizy 64 pomiarów w otoczeniu częstotliwości środkowej - wybierany jest pomiar o maksymalnej wartości i na wykresie odpowiada mu jedna pionowa linia.
W ten sposób system pomiarowy nie pominie żadnej częstotliwości w paśmie przemiatania. Przez to możliwy jest taki wynik jak na załączonym zdjęciu gdzie widać 8 prążków, które są nieparzystymi harmonicznymi sygnału prostokątnego o częstotliwości 0.75MHz. Najwyższy prążek to oczywiście sygnał podstawowy (0.75MHz) a ósmy prążek to 15-ta harmoniczna (11.25MHz). Zgrubna analiza wysokości prążków potwierdza, że maleją one zgodnie z regułą 1/n w stosunku do sygnału pierwszej harmonicznej gdzie n to rząd nieparzystej harmonicznej. Pasmo przemiatania w tym przypadku to 0.5-12.5MHz i jak widać pomiędzy nieparzystymi harmonicznymi nie ma prążków parzystych (a przynajmniej w tej skali dokładności) jak powinno być dla sygnału prostokątnego. Na razie mam problem z czułością pomiaru (tu mierzony sygnał ma wartość pp 5V) i muszę popracować nad lepszym zobrazowaniem wyniku bo zaczyna mnie spowalniać wyświetlacz. Im więcej ciemnego pola tym wolniej działa pomiar. Dla pasma 30MHz przemiatanie trwa do 10 sek. W paśmie ok. 1 MHz pomiar trwa ok. 1 sek.
L.J.

