20-12-2023, 17:55
Ok, teraz mam pełną jasność. I jest tak jak się domyślałem bowiem nie ma najmniejszego sensu rozpatrywanie osobno "obwodu szeregowego" i "obwodu równoległego" dipleksera. One są silnie sprzężone i wpływają jeden na drugi w nierozerwalny sposób. Trzeba patrzeć na diplekser jak na jeden podzespół o określonych właściwościach, jak na taką "czarną skrzynkę". Wzajemne relacje są ściśle matematycznie zależne, podobnie jak w filtrach i nie sposób rozbijać to na atomy. Dlatego proponuję zakończyć analizę na tym etapie i ew. wrócić do niej w gotowym prototypie gdy pomiary wykażą jakieś nieprawidłowości. I nie przejmuj się stratami bo jak wykazały to i Twoje pomiary one są pomijalnie małe jeśli patrzeć na to globalnie.
Nie ma też co mierzyć tłumienia przejścia między portami dla "małej" i "dużej" cewki w obwodzie rezonansowym. To naturalne, że tłumienie będzie miało rożną wartość bo dla obwodu będącego w rezonansie mamy do czynienia z czystą rezystancją, którą w tym wypadku nazywamy impedancją charakterystyczną (falową) a która to zależy (w największym skrócie) od stosunku L do C. Im większa cewka tym większa wypada impedancja dla tej samej częstotliwości rezonansowej. Myślę, że to już będzie jasne.
Nie ma też co mierzyć tłumienia przejścia między portami dla "małej" i "dużej" cewki w obwodzie rezonansowym. To naturalne, że tłumienie będzie miało rożną wartość bo dla obwodu będącego w rezonansie mamy do czynienia z czystą rezystancją, którą w tym wypadku nazywamy impedancją charakterystyczną (falową) a która to zależy (w największym skrócie) od stosunku L do C. Im większa cewka tym większa wypada impedancja dla tej samej częstotliwości rezonansowej. Myślę, że to już będzie jasne.
Praktykujący teoretyk


