27-08-2021, 18:15
Witam!
Zrobiłem kolejne wykresy, tym razem dla |gamma|. Na podstawie tej wielkości wylicza się właśnie SWR=(1+|gamma|)/(1-|gamma|)
Gamma przyjmuje wartości od -1 (zwarcie) przez 0 (dopasowanie) do +1 (rozwarcie) tak więc jest to w pewnym sensie odwrotność SWR właśnie w podanej relacji.
Gamma oblicza się jako (Zl-Ro)/(Zl+Ro) i dla wcześniejszych obliczeń można powiedzieć, że jest to wielkość zespolona o parametrach:
re(gamma)=((R-R0)*(R+R0)+X^2)/((R+R0)^2+X^2)
im(gamma)=2RX/((R+R0)^2+X^2)
|gamma|=sqrt(re(gamma)^2+im(gamma)^2)
Wykres |gamma| pokazuje wyraźne minimum (dopasowanie) w rejonie wcześniej podanych wartości dopasowania L i C (ok.1.969uH i 196.9pF).
Ale, szczególnie na ostatnim rysunku (widok z góry) widać, że |gamma| osiąga dość małe wartości również dla wartości L i C dalekich od dopasowania. I tu kryje się pułapka dla rozwiązania analitycznego bo dla obu przypadków wkład do wartości gamma mają inne składniki. Dla prawdziwego dopasowania głównym składnikiem Zl jest część rzeczywista z niewielkim lub zerowym wkładzie części urojonej o tyle w części, w okolicach 1000pF i 1.5uH część rzeczywista jest bliska zeru a część urojona bliska 50 omów. Metoda gradientu również mogłaby tu mieć problemy bo taki algorytm słabo radzi sobie w długich "dolinach" zmienności funkcji jak w takim przypadku. Źle dobrany punkt startowy lub niewłaściwy krok mógłby całkowicie pominąć właściwe rozwiązanie. Prawdopodobnie, uczulenie algorytmu gradientu na proporcje części rzeczywistej i urojonej obliczeń mogłoby znacząco poprawić jego skuteczność.
Na szczęście w ATU pomiar oparty jest na fali padającej i odbitej a więc ściśle związanych z mocami obu fal więc nie ma ryzyka pomyłki.
L.J
P.s.
Załączam ostatnią, nieco skorygowaną wersję oprogramowania
ant_tun012.hex (Rozmiar: 39.34 KB / Pobrań: 528)
Zrobiłem kolejne wykresy, tym razem dla |gamma|. Na podstawie tej wielkości wylicza się właśnie SWR=(1+|gamma|)/(1-|gamma|)
Gamma przyjmuje wartości od -1 (zwarcie) przez 0 (dopasowanie) do +1 (rozwarcie) tak więc jest to w pewnym sensie odwrotność SWR właśnie w podanej relacji.
Gamma oblicza się jako (Zl-Ro)/(Zl+Ro) i dla wcześniejszych obliczeń można powiedzieć, że jest to wielkość zespolona o parametrach:
re(gamma)=((R-R0)*(R+R0)+X^2)/((R+R0)^2+X^2)
im(gamma)=2RX/((R+R0)^2+X^2)
|gamma|=sqrt(re(gamma)^2+im(gamma)^2)
Wykres |gamma| pokazuje wyraźne minimum (dopasowanie) w rejonie wcześniej podanych wartości dopasowania L i C (ok.1.969uH i 196.9pF).
Ale, szczególnie na ostatnim rysunku (widok z góry) widać, że |gamma| osiąga dość małe wartości również dla wartości L i C dalekich od dopasowania. I tu kryje się pułapka dla rozwiązania analitycznego bo dla obu przypadków wkład do wartości gamma mają inne składniki. Dla prawdziwego dopasowania głównym składnikiem Zl jest część rzeczywista z niewielkim lub zerowym wkładzie części urojonej o tyle w części, w okolicach 1000pF i 1.5uH część rzeczywista jest bliska zeru a część urojona bliska 50 omów. Metoda gradientu również mogłaby tu mieć problemy bo taki algorytm słabo radzi sobie w długich "dolinach" zmienności funkcji jak w takim przypadku. Źle dobrany punkt startowy lub niewłaściwy krok mógłby całkowicie pominąć właściwe rozwiązanie. Prawdopodobnie, uczulenie algorytmu gradientu na proporcje części rzeczywistej i urojonej obliczeń mogłoby znacząco poprawić jego skuteczność.
Na szczęście w ATU pomiar oparty jest na fali padającej i odbitej a więc ściśle związanych z mocami obu fal więc nie ma ryzyka pomyłki.
L.J
P.s.
Załączam ostatnią, nieco skorygowaną wersję oprogramowania
ant_tun012.hex (Rozmiar: 39.34 KB / Pobrań: 528)

