Funkcja nie ma lokalnych minimów. Pamiętajmy, że jest dwuargumentowa. Jedyny punkt, dla którego jednocześnie d|SWR|/dL i d|SWR|/dC są zerowe, to środek diagramu Smitha (SWR=1). |SWR| oznacza, że mierzymy moduł SWR.
Prawidłowy algorytm jest więc zawsze zbieżny. Problemem są ograniczone wartości L i C - zakres i liczba.
Każda para wartości L i C dopasowuje jedną wartość impedancji (zespolonej) anteny. Mamy więc 128x128=ok 16000 impedancji, które możemy dopasować. Wszystkie te punkty wraz z pewnym otoczeniem (określonym maksymalnym dopuszczalnym SWR) możemy zaznaczyć na diagramie Smitha.
Punktów niby dużo, ale dla skrajnych częstotliwości (np 80m i 10m) 'uciekają' w jedną stronę diagramu Smitha, a z drugiej robią się rzadkie (raster: 0.16uH to 30 omów dla 28MHz, 1000p to 47 omów dla 3.5MHz).
(Edit) Powinno być:
Punktów niby dużo, ale dla skrajnych częstotliwości 'uciekają' w jedną stronę diagramu Smitha. Z przeciwnej strony robi się pusto (ograniczone wartości L, C) lub rzadko (z powodu rastra - 0.16uH to 30 omów dla 28MHz)
Prawidłowy algorytm jest więc zawsze zbieżny. Problemem są ograniczone wartości L i C - zakres i liczba.
Każda para wartości L i C dopasowuje jedną wartość impedancji (zespolonej) anteny. Mamy więc 128x128=ok 16000 impedancji, które możemy dopasować. Wszystkie te punkty wraz z pewnym otoczeniem (określonym maksymalnym dopuszczalnym SWR) możemy zaznaczyć na diagramie Smitha.
Punktów niby dużo, ale dla skrajnych częstotliwości (np 80m i 10m) 'uciekają' w jedną stronę diagramu Smitha, a z drugiej robią się rzadkie (raster: 0.16uH to 30 omów dla 28MHz, 1000p to 47 omów dla 3.5MHz).
(Edit) Powinno być:
Punktów niby dużo, ale dla skrajnych częstotliwości 'uciekają' w jedną stronę diagramu Smitha. Z przeciwnej strony robi się pusto (ograniczone wartości L, C) lub rzadko (z powodu rastra - 0.16uH to 30 omów dla 28MHz)
Andrzej

