RE: Direct Conversion Receiver Polyakova prezentowany w Burzeninie 2019
Witam!
Pozwolę sobie na lekką polemikę z Jurkiem w sprawie obwodów wejściowych.
Nie jest do końca tak, że obwody te nie mają znaczenia. W pokazanym przeze mnie przykładzie odbiornika na 3 pasma mają podstawowe znaczenie w separacji pasma - bo przecież heterodyna ma dla każdego pasma tą samą częstotliwość.
Poza tym, im mniej nie pożądanych częstotliwości na wejściu tym lepiej bo jedną z bolączek prostych układów DC jest odbiór silnych sygnałów stacji broadcast przedostających się wgłąb układu.
O ile pożądany sygnał powstaje w wyniku zmieszania heterodyny a następnie wydzieleniu produktu mieszania na częstotliwościach akustycznych, to silne, niepożądane sygnały są "odbierane", przez detekcję, na każdej nieliniowości: na złączu baza- emiter, na diodach mieszacza itp.
Tak więc, im lepsza filtracja na wejściu tym lepiej dla sygnału pożądanego.
Niemniej, okazuje się, że nawet prosty układ, z jednym obwodem zapewnia całkiem znośny odbiór bo równoległy obwód rezonansowy, luźno sprzężony z anteną i dopasowany do dalszych stopni np. przez odczep ma dużą selektywność czyli małe tłumienie w rezonansie i duże tłumienie poza pasmem.
Zalecam więc wykonanie tego obwodu z cewką o dużej dobroci (duża średnica, mała długość, uzwojenie licą lub przewodem o dużej średnicy) ale także zastosowanie kondensatora zmiennego dla dostrojenia do rezonansu jeśli zakres pracy to kilkaset kHz. Jeśli zamierzasz zrobić odbiornik DC w większej obudowie to najlepiej w metalowej z dobrym ekranowaniem i cewką o dużej dobroci. ze strojeniem za pomocą kondensatora zmiennego.
A co do zasilania z napięcia 12V to wynika głównie z przyjętego standardu zasilania. Jest to przeciętna wartość zasilania odpowiednia dla układów z tranzystorami ale okazuje się, że jest także dobrze dopasowana do innych elementów w układach bo na przykład generatory zasilane z napięcia 12V dostarczają poziom sygnału odpowiedni dla mieszaczy diodowych.
Firmy produkując układ dopasowują go do z góry przyjętego napięcia zasilania i często jest to 12V.
Dla układów scalonych TTL przyjęto 5V - między innymi ze względu na częstotliwość pracy i straty energii a współczesne układy komputerowe to głównie 3.3V (z podobnych powodów jak TTL) i wydaje się, że jest to dolna granica związana z fizyką półprzewodników i wymaganiami na poziom sygnału na wyjściu.
Na załączonym rysunku charakterystyki tranzystora BC547 wyraźnie widać, że początek użytecznego zakresu pracyi zaczyna się dla napięcia C-E (kolektor-emiter) od 0.5 do ok.2V.
Im mniejszy prąd bazy tym mniejsze może być napięcie C-E ale nie powinno być mniejsze niż 0.5V. Napięcie zasilania powinno pozwalać na zmianę napięcia na kolektorze tranzystora zarówno w górę jak i w dół a więc dla liniowej pracy, najlepiej aby napięcie C-E miało wartość ok. połowy napięcia zasilania (z uwzględnieniem napięcia początkowego C-E).
W takim stanie sterowanie w bazie sinusem spowoduje, że tranzystor będzie się zatykał i odtykał równomiernie w obu kierunkach dając największą dynamikę pracy (to uproszczona analiza dla układu ze wspólnym emiterem). Oczywiście, jeśli pracujemy z małymi sygnałami na wejściu to napięcie C-E może odbiegać od tej zasady ale także im większe napięcie zasilania tym lepsze warunki pracy tranzystora.
Dla mniejszych napięć zasilania punkt pracy tranzystora należy dobierać bardziej starannie bo, dla przykładu, zasilając układ z napięcia 3V, trzeba dla każdego tranzystora uwzględnić, że początkowe napięcie C-E w granicach ok. 1V należy wyłączyć z potencjalnego zakresu zmian na wyjściu (na kolektorze względem masy) więc do dyspozycji zostaje ok. 3-1=2V a więc napięcie na kolektorze względem masy powinno wynosić ok. 2V a sygnał sinusoidalny na wyjściu nigdy nie przekroczy wartości 2Vpp. To są oczywiście rozważania teoretyczne bo w praktyce zakresy te będą nieco mniejsze ze względu na nieliniowe efekty nasycenia i zatkania tranzystora w skrajnych stanach.
Sądzę, że dla odbiornika jaki chcesz zrobić odpowiednim napięciem zasilania będzie np. 4.8V (4 akumulatory 1.2V), 6V (4 baterie 1.5V) a najlepiej 9V (bateria 9V lub 8 akumulatorów 1.2V) albo 14V (czyli tzw. akumulator 12V).
W razie potrzeby pomogę Ci przeliczyć wartości oporników ustalających punkt pracy tranzystorów dla innego zasilania niż 12V.
Zasilanie z baterii jest najlepsze dla odbiorników DC bo, ze względu na większość wzmocnienia skupioną w torze m.cz. są one silnie wrażliwe na zakłócenia z typowych zasilaczy sieciowych.
L.J.
P.s. Na razie nie dokopałem się do płytek wspomnianego urządzenia ale pewnie jutro to zrobię i liczę, że mam co najmniej 2 komplety bo mam już na płytki dwóch chętnych :-)