HF high dynamic " H mode " Mixers

Some electronic devices (usable as general purpose switches) can be used for HF up to 30 MHz as high dynamic mixer, these are low cost components but it is possible to obtain high dynamic mixers. These components are FETs in quadruple configuration used as switches called 4 Bit Bus Switch, or quadruple logical ports used as switches too. Both are always driven by a C-Mos logical port on low level LO signal. We will not dwell on the explanation of these mixers (see Internet or magazines) the cost of these components is very low because they were developed for consumer market. The trick lies in selecting devices that, among all the many available products, have low parasitic capacity, fast switching times and very low $R_{D S}$ series resistance.

original function		cod.	price € each $1-10 \mathrm{pcs}$
C Mos SMD , 4 bilateral switch	it is the simpliest and cheapest solution for H mode mixers	CD 4066-SMD	0,50-0,45
		CD 4066-DIL	0,80
SMD , 4 bit bus switch	Cin 3pF , 5 dB loss, OL only -10 dBm	FST 3125 M	2,00-1,80
DIL , 4 bit bus switch	tr $+\operatorname{td}(\mathrm{on})=1 \mathrm{nS}$ fast switching , CDG 0.3 pF , Cout 1.3 pF , $+/-10 \mathrm{~V}$, case DIL	SD 5000	7,50
Metallic TO72, single FET, it is the single divice contained in the quad SD 5000N		SD 215 DE	see FET
SMD , 4 OR SMD	they are used as rectangular wave form LO, Schmidt trigger and 180° phase shifter for LO driver	74 HC 86	0,40-0,30
SMD, 4 OR SMD		74 AC 86	0,50-0,40

wide band, passive BALACED MIXERS
 PASSIVE MIXERS useful informations

The passive mixers are versatile and extraordinary components, they are also suitable for other applications in addition to theirs classic, some of these applications are well known but others a little less. In these few lines we will also give you some little tips on how to best use them.

examples of balanced mixers particular applications

Balanced
Modulator
Demodulator
DSB

Phase detector

PSK QPSK Modulator Demodulator

Attenuator

 and LimiterBalanced mixers and modulators are substantially
equal, mixers are also used as audio modulators or
demodulators provided that the IF port is DC coupled,
in fact some years ago they were called also as
balaced modulators (see VHF Comm 2-96).
Applying two identical frequencies are identical to the RF and
OL ports, in IF there will be d.c. voltage proportional to the
phase difference of the two signals. This is obviously valid only
for those mixers who have the IF port coupled in d.c.. The early
synthesizers in the 60s had the phase comparator made by a
balaced mixer. Some mixers have a positive polarity output
other negative, eg. SBL1 and SRA 1 have negative polarity with
offset of 1 mV .

In simple words we can say that two mixers, a 0° hybrid and a 90° hybrid can form a modulator or demodulator for digital signals, this happened for example at the beginning with the first GSM module. In this case, however, the bandwidth is limited to $10-15 \%$ of the mixer bandwdth.

By applying a signal to the LO port with RF output port it is possible, through the IF input port, make an attenuation with typical range of $3-40 \mathrm{~dB}$. The same function is as limiter, pulse modulator, etc.. For example, the mixer SRA 1 and SBL 1 have the minimum attenuation at 3 dB with 20 mA of bias.

relative phase between 2 signals

For more informations see the manufacturers' catalogues about balanced mixers like, Merrimac, MaCom, Anzac, RHG, MCL, etc... there are often available many application notes of considerable interest.

PASSIVE MIXERS, suggestions on how to use

The RF and IF ports can be freely swapped. For example in the case of conversion up (as in a spectrum analyzer or TX UP converter) RF port is exchanged with the IF as the RF port often has a larger range than IF.

- The passive mixers offer very large IMD dynamics, the IF port should be well adapted to broadband for example by a 2-4 dB attenuator on IF output to improve the matching (see page 'not connectorized attenuators').
- A mixer can be used also beyond its frequency specification, being a broadband aperiodic circuit the slope of degradation is slow. In practical experience degradation is the worsening of insulation between the ports (or of the balance if it is used as a balanced modulator) going up versus frequency the LO port would seem to be more tolerant to overcome its limits either at higher or at lower frequencies.
continue, broad band, passive BALANCDD MIXERS
See on the previous page some suggestions on how to use passive mixers

case	frequency in MHz		$\begin{aligned} & \hline 1 \mathrm{~dB} \\ & \mathrm{C} . \mathrm{P} . \end{aligned}$	$\begin{gathered} \mathrm{LO} \\ \mathrm{dBm} \end{gathered}$	1 dB C.P. $=$ Compression Point at -1dB on RF input	cod.	$\begin{aligned} & \text { price } \\ & \text { € each } \end{aligned}$
	LO and RF	IF (or RF)					
big size	0.0005-10	dc - 10	+1	+7	for VLF-LF-MW-HF, LO + RF starting from 500 Hz , hermetic HI-REL case, 50 dB insulation	SRA 8	on request
	0.003-100	dc - 250	+1	+7	for VLF-LF-MW-HF , HI-REL	GRA 6	on request
	0.01-250	dc - 250	+1	+7	for VLF-LF-MW-HF-VHF, hermetic HI-REL case	TAK 5	
	0.05-200	dc - 200	+1	+7	TAK 5 pin compatible, hermetic HI-REL case	TAK 5R	special offer $19,50$
metallic	0.02-200	dc - 200	+1	+7	replaceale and pin compatible with TAK5R	SBL 3	see TAK5
case	0.05-200	dc - 200	+1	+7	Watkins-Johnson, 50 dB high insulation up to $30 \mathrm{MHz}, 35 \mathrm{~dB}$ up to 200 MHz	M6D 50	18,50
	0.5-500	dc - 500	+1	+7	HI-REL ceramic case	GRA 1	16,00
	0.5-500	dc - 500	+1	+7	HI-REL version of SBL 1	EMA 1S	11,50
	1-500	dc - 500	+1	+7	hermetic case, replaceale and pin compatible with SBL 1 - IE 500, or in plastic version ASK1	HPF 505	10,50
	1-500	dc - 500	+1	+7	same of HPF 505 and SBL 1	IE 500	$\begin{gathered} \text { see HPF500 } \\ \text { or SBL1 } \end{gathered}$
	1-500	dc - 500	+1	+7	see also HPF505 100\% compatible	SBL 1	11,60
					replaceale and pin compatible with HPF 505X	SBL 1X	see HPF505X
	10-1000	$\begin{gathered} 5-500 \\ \text { (dc-1000) } \end{gathered}$	+1	+7	replaceale and pin compatible with SBL1X	HPF 505X	$\begin{array}{\|c\|} \hline \text { special offer } \\ 9,00 \\ 3 p c s=8,00 \text { ea. } \end{array}$
	1-1500	dc - 1000	+10	+17	HIGH DYNAMIC pin compatible with SRA 1H	EMA 220 X	$\begin{gathered} \text { special offer } \\ 25,00 \\ \hline \end{gathered}$
	0.5-500	dc - 500	>+8	+17	HI-REL version $-54 /+100^{\circ} \mathrm{C}$, high insulation typical 50 dB in HF and high dynamic IP +25dBm level of desensitization at $-1 \mathrm{~dB}=+17 \mathrm{dBm}$	M9BC Watkins Johnson	33,00
	0.5-500	dc - 500	+10	+17	HIGH DYNAMIC , hermetic HI-REL case, see also EMA220X - TFM 3MH or SMD cheaper version RMS 1H	SRA 1H	not available
	10-3000	10-1000	+10	+17	HIGH DYNAMIC hermetic HI-REL case	SRA 11H	on request
	1-750	dc - 750	+10	+17	HIGH DYNAMIC	SRA 1 WH	33,00
GRA MgBC $25 \times 12.7 \mathrm{~mm}$	5-1200	dc - 1200	+10	+17	HIGH DYNAMIC hermetic HI-REL case, typical insulation $30-35 \mathrm{~dB}$ low loss typical 5.4-6 dB (list price MCL $36 €$)	SRA 173H	special offer $29,00$
	0.07-200	dc - 200	+15	+23	VERY HIGH DYNAMIC , hermetic HI-REL case	RAY 3	55,00
	1-500	dc - 500	+15	+23	VERY HIGH DYNAMIC \cong RAY 1	MD 138	59,00
	100-2500	dc - 500	+15	+23	VERY HIGH DYNAMIC	RAY 11	88,00
	0.1-500	0.01-500	+20	+23	VERY HIGH DYNAMIC , hermetic HIREL case, 40 dB insulation	SAY 1	66,00
					Vari-L	CM-2	on request

HPF 505 lab tests : $\mathrm{P} 1 \mathrm{~dB}=+2 \mathrm{dBm}$ (input power), IMD not very sensible at LO level (within $+/-3 \mathrm{~dB}$)

See on the previous page some suggestions on how to use passive mixers

case	frequency in MHz		$\begin{aligned} & 1 \mathrm{~dB} \\ & \mathrm{C} . \mathrm{P} . \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{LO} \\ \mathrm{dBm} \\ \hline \end{array}$	1 dB C.P. $=$ Compression Point at -1dB on RF input	cod.	price € each
	LO and RF	IF (or RF)					
small size metallic	1-250	dc - 250	+9	+13	high dynamic and excellent cheaper alternative to the type SRA1H, see note below	EMT 3 MH TFM 3 MH	special offer 20,00
	0.04-400	dc - 400	+1	+7	from VLF to UHF, positive polarity phase detector	TFM 3	24,00
	2-600	dc - 600	+1	+7		TUF 1	12,00
	1-1000	dc - 1000	+1	+7		TFM 2 = EMT 2	19,00
	5-1250	dc - 1250	+1	+7		EMT 4 = TFM 4	$\begin{gathered} \hline \text { special offer } \\ 19,50 \end{gathered}$
	5-1500	dc - 1000	+1	+7		EMT 5 = TFM5	$\begin{gathered} \text { special offer } \\ 19,00 \end{gathered}$
	20-1500	dc - 1000	+1	+7	IP3 +13 dBm	CLP 311	$\begin{gathered} \text { special offer } \\ 18,00 \end{gathered}$
	0.1-500	dc - 500	+1	+7	hermetic HI-REL 8 pins, case height: 10 mm	SAM 3	19,00
	10-3000	10-800	+5	+10	it is a variant of TFM15 with 6 pins instead of 4 pins, 2 pins further enhance the connection of GND, the case is 10 mm high	TFM 15-9	special offer $36,00$
	50-1000	dc - 1000	+9	+13	high dynamic	$\begin{aligned} & \text { ETUF-2MH } \\ & \text { (sm) } \\ & (=\text { TUF-2MH }) \end{aligned}$	11,00
	5-1000	dc - 1000	+14	+17	high dynamic 4 dB more than SRA 1H	TFM 2H	38,00
	0.1-250	dc - 250	+14	+17	high dynamic 4 dB more than SRA 1H	TFM 3H	26,00
	50-1000	dc - 1000	+14	+17	it can be replaced with TFM 2 H	TUF 2H	see TFM2H

HIGH
DYNAMIC
high and medium dynamic miniature TFM series mixers at the same LO level, they have a higher dynamic than the SRA... SBL \ldots models about $+3 /+4 \mathrm{~dB}$, see examples TFM $3 M H$ and TFM 2 H : - TFM 2H and TFM 3H with the same LO level of SRA 1H, they have a dynamic of 4 dB more - TFM 3MH with a LO level of 4 dB less than SRA 1H type it has only 1 dB less in dynamic and compression (it is usable alse at 430 MHz with +1 dB loss).

passive MIXER ultra flat metallic case

case size $13 \times 10 \times 3.5$	frequency in MHz		$\begin{aligned} & 1 \mathrm{~dB} \\ & \text { C.P. } \end{aligned}$	$\begin{array}{c\|} \hline \mathrm{LO} \\ \mathrm{dBm} \end{array}$	1 dB C.P. $=$ Compression Point at -1dB on RF input	cod.	price $€$ each
	LO and RF	$\begin{gathered} \mathrm{IF} \\ \text { (or RF) } \\ \hline \end{gathered}$					
flat metallic case gold plated	10-1000	dc - 1000	+1	+7	more tolerant versus LO level	MD 113	on request
	10-1500	dc - 1500	+1	+7	more tolerant versus LO level	$\begin{aligned} & \text { MD } 149 \\ & (=\text { LMX149 }) \end{aligned}$	40,00
	800-3000	dc - 1500	+1	+7	Watkins - Johnson , often usen in spectrum analyzers	$\begin{aligned} & \text { M4G } \\ & (=\text { LMX156 }) \end{aligned}$	43,00
	10-1500	dc - 1000	+1	+7	Watkins - Johnson HI-REL QPL	MA4-100	40,00

continue, broad band, passive BALANCED MIXPRS

Pag B 4

case	frequency	in MHz	$\begin{aligned} & 1 \mathrm{~dB} \\ & \text { c.p. } \end{aligned}$	$\begin{gathered} \mathrm{OL} \\ \mathrm{dBm} \end{gathered}$	1 dB C.P. $=$ Compression Point at -1 dB	Cod.	price $€$ each
	LO and RF	IF (or RF)					
SMD or Plastic	1-1000	dc - 1000	+1	+7		ADE 2ASK	9,50
	1600-3500	dc - 1500	+1	+7		ADE 35	off 12,00
	1-600	dc - 600	+1	+7	miniature, specifications as SBL1	ASK 1	7,00-6,40
	2-500	dc - 500	+1	+7		JMS 1	7,00
	0.5-500	dc - 500	+1	+7	they are exactly the same	RMS 1	9,00
						EMRS 1	6,50-5,90
ADE	5-1000	dc - 1000	+1	+7	SMD , see MD4007X cheaper	RMS 2	on request
JMS ...RMS MD... EMRS. \square	5-1500	dc - 1000	+1	+7	they are exactly the same special offer	EMRS 5 RMS 5	$\begin{gathered} 9,00 \\ 3 \mathrm{pcs}=8,00 \mathrm{ea.} \\ 10 \mathrm{pcs}=7,00 \mathrm{ea} . \end{gathered}$
	5-1900	5-1000	+1	+7		RMS 11 X	5,50-4,85
	1-1000	dc - 1000	+1	+7	100\% = RMS 2	MD 4007X	$\begin{gathered} \text { special offer } \\ 5,90 \\ \hline \end{gathered}$
	200-3000	dc - 1000	+1	+7		RMS 30 $\text { (= EMRS } 30 \text {) }$	$\begin{gathered} \text { special offer } \\ 9,50 \\ 3 \mathrm{pcs}=8,50 \text { ea. } \\ 10 \mathrm{pcs}=7,50 \mathrm{ea} . \\ \hline \end{gathered}$
	2400-6700	dc - 1000	+1	+7	good insulation L-R typ. >32 dB L-I typical >23 dB	MBA 671	12,00
	2-500	dc - 500	+5	+10	very good insulation	RMS 1LH	9,50
	5-2500	5-1500	+9	+13	very wide bandwidth , very good insulation LO-RF and LO-IF typical 30 dB Mil M-28837 $-55 /+100^{\circ} \mathrm{C}$	$\begin{aligned} & \text { EMRS } 25 \mathrm{MH} \\ & (=\mathrm{RMS} 25 \mathrm{MH}) \end{aligned}$	$\begin{gathered} \text { special offer } \\ 9,50 \\ 3 \mathrm{pcs}=8,50 \text { ea. } \\ 10 \mathrm{pcs}=7,50 \mathrm{ea} . \\ \hline \end{gathered}$
	2-500	dc - 500	+11	+17	HIGH DYNAMIC	RMS 1H	12,00
	50-2000	50-2000	+10	+17		SYM-11H	19,00
$\begin{aligned} & L O=200-1300 \\ & R F \text { or IF }=300-1000 \\ & R F \text { or } I F=d c-1000 \end{aligned}$			+1	+7	special offer	RMS 45	$\begin{gathered} 6,00 \\ 3 \mathrm{pcs}=5,00 \mathrm{ea} . \end{gathered}$

PAM 42: a very particular mixer

This passive double-balanced mixer is very special since it was especially made for UP converters, a so strange frequency range makes it useful for building spectrum analyzers or tracking generators. The case is professional gold plated and it is very particular but well-suited for RF assemblies.

other parts available from us are also listed, as an example, in the scheme up here

SIM series, a new family of microwave mixer

This is a new family of double balanced passive mixers from Minicircuits with a wide bandwidth, both in RF-OL (up to 15 GHz) and in IF (up to 4 GHz).

They are fabricated using the LTCC technology, Low Temperature Co-fired Ceramic, with multilayer circuits, using multiple layers of ceramic substrate tape. The benefits of LTCC are :

- Super small size , this is very important for the microwave technology .
- High repeatability and high performances using low loss ceramic substrate .
- Low cost for high volume production .

LTCC is a repeatable process, it can reliably produce large quantities of microwave components, measuring a fraction of the size of components fabricated with conventional substrate materials.
Thanks to wide IF bandwidth they are usable as up and down converter, covering a large number of applications to 15 GHz . With 8 different models, the frequency range is from 750 MHz to 15 GHz and OL level from +4 to +10 dBm .

High isolation typical 25 dB (20 to 35 dB) , not so bad for very wide bandwidth devices .

case SMD$5 \times 4.5 \mathrm{~mm}$	Frequency in MHz		$\begin{gathered} \hline 1 \mathrm{~dB} \\ \text { c.p. } \\ \mathrm{dBm} \\ \hline \end{gathered}$	$\begin{gathered} \text { IP3 } \\ \text { dBm } \end{gathered}$	$\begin{gathered} \mathrm{OL} \\ \mathrm{dBm} \end{gathered}$	Cod.	price € each
	LO-RF	IF (or RF)					
Minicircuits	2.400-7.000	dc - 3.000	+1	+12	+4	SIM-73L	17,90
	3.700-10.000	dc - 4.000	+1	+13	+7	SIM-14	16,80
	750-4.200	dc - 1.500	+1	+12	+7	SIM-43	14,90
	2.300-8.000	dc - 3.000	+1	+15	+7	SIM-83	14,40
	3.400-15.000	dc - 4.000	+1	+10	+7	SIM-153	19,60
	750-6.000	dc - 1.500	+3	+12	+10	SIM-63LH	16,80
	1.700-8.000	dc - 3.000	+3	+18	+10	SIM-83LH	14,40
	3.200-15.000	dc - 4.000	+3	+18	+10	SIM-153LH	19,60
	6.000-15.000	dc - 2.000	+10	+20	+15	HMC 142 C8	on request

type or family	microwave MIXERS -- special types			cod.	price € each
AKD 2820 per SMD AKD 12000 metallico in TO39	$\left\lvert\, \begin{aligned} & \text { RF } 9-12 \mathrm{GHz} \\ & \text { LO } 9-12 \mathrm{GHz} \\ & \text { IF } 400-2300 \mathrm{MHz} \end{aligned}\right.$	Anadigics, the LO can be either with internal DR puck oscillator or by external injection with +10 dBm , it is suitable to work with very extended temperature range $-55 /+85^{\circ} \mathrm{C}$. It is a low-cost high-gain X-band mixer	$>30 \mathrm{dBG}$, 6dBNF, OL phase noise -105dBC/Hz @ 100 KHz	$\begin{gathered} \text { AKD } \\ 2820 A X \end{gathered}$	$\begin{gathered} 1-3 \mathrm{pcs} \\ 4,50 € \\ \hline \end{gathered}$
					$\begin{gathered} 4-9 \mathrm{pcs} \\ 4.00 € \end{gathered}$
					$\begin{gathered} 10+\mathrm{pcs} \\ 3,50 € \\ \hline \end{gathered}$
			100 MHz IF band with 20dBG and 200 MHz with 30 dBG , internal LO $8-12 \mathrm{GHz}$ band		$\begin{gathered} 1-3 \mathrm{pcs} \\ 5,00 € \\ \hline \end{gathered}$
				$\begin{gathered} \text { AKD } \\ 12000 \end{gathered}$	$\begin{gathered} 4-9 \mathrm{pcs} \\ 4,50 € \\ \hline \end{gathered}$
					$\begin{gathered} 10+\mathrm{pcs} \\ 4,00 € \\ \hline \end{gathered}$
example of 10 GHz mixer from Agilent - HP app. note	they are a couple of Schottky diodes in series in a single SMD case suitable for mixers up to 16 GHz , the picture aside shows an Agilent - HP - Avago application note that is an example of X -band mixer built without any other external components			HSMS	see SMD
				8202 or MA4E1245	Schottky diodes
chip die for bonding $0.55 \times 0.85 \mathrm{~mm}$	$\begin{aligned} & \text { double-balanced passive chip die mixer for bonding } \\ & \text { RF }+ \text { OL } 25-40 \mathrm{GHz} \quad \mathrm{LO}+13 \mathrm{dBm} \\ & \text { IF dc }-8 \mathrm{GHz} \quad \mathrm{IP} 3+19 \mathrm{dBm} \\ & \hline \end{aligned}$			HMC 329	on request
	$\begin{aligned} & \text { if used as UP converter (or modulator) : } \\ & \text { IF (or modulation) dc }-400 \mathrm{MHz} \text {, } \\ & \mathrm{LO}(\mathrm{RF} \text { in }) 2-4 \mathrm{GHz}+10 \mathrm{dBm} \text {, RF out } 2-4 \mathrm{GHz} \text {, } \\ & \text { with SMA f connectors, size } 60 \times 60 \mathrm{~mm} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ANAREN } \\ & 70666 \end{aligned}$	80,00
	Minicircuits RF + LO $10-1.000 \mathrm{MHz}-\mathrm{LO}+7 \mathrm{dBm}$ IF dc - 1.000 MHz , Insertion Loss $6-8.5 \mathrm{~dB}$ high insulation 25-50 dB, with SMA f connectors very small size $32 \times 21 \mathrm{~mm}$			ZEM-2B	on request

Mixer + Front-end 21-24 GHz

This is a 21 to 24 GHz receiving FRONT-END, the RF input is in WR42 waveguide with its input matching, it follows the first isolator in order to match the waveguide and the amplifier. The low noise amplifier is a GaAsFET internal matched MMIC already matched by the manufacturer on the lower $21-22 \mathrm{GHz}$ band, type FMC2122LN-03, or on the higher 2223 GHz band, type FMC2223LN-03. The characteristic of this amplifier is a gain of $12-13 \mathrm{~dB}$ with a noise figure of $3-3.5 \mathrm{~dB}$ and an excellent stability and repeatability very hard to obtain at these frequencies. There is another insulator as matching to avoid the return of the LO signal towards the antenna. The mixer consists of 2 quads of Schottky beam lead HP HSCH 9301. This configuration, well known in microwave field, allows to use a LO at half frequency of the normally required simplifying the LO circuit. Here follows a wide band hybrid for the IF output centered at 1 GHz but usable from 500 MHz to 1500 MHz .

	low band model	high band model
cod.	RF-22WR42	RF-23WR42
RF	$21-22,7 \mathrm{GHz} \quad \max 20.6-23 \mathrm{GHz}$	$22,4-23,8 \mathrm{GHz} \quad \max 22,2-24 \mathrm{GHz}$
LO	(freq RF - freq IF) : 2 (about 10-11 GHz)	(freq RF + freq IF) : 2 (about 11,8-12,6 GHz)
	from +12 to +13 dBm	
IF	$\pm 1 \mathrm{GHz} \quad \max 400-1500 \mathrm{MHz}$	
Gain	3-6 dB	
Noise figure	4.5-6 dB	
Image rejection	about 15 dB , depending on IF and LO frequency	
RF and IF return loss	about -15 dB	
Connectors	LO and IF with SMA f -- RF input with WR42 waveguide	
Power supply	+8V 50mA $\quad-5 \mathrm{~V} 10 \mathrm{~mA}$	
Size	height: 26 mm width: 60 mm length: 91 mm	

Type or family	description		cod.	price € each 1-10 pcs
active double-balanced Analog Devices \square AD 831	high dynamic +24 dBm IP3 e +10 dBm 1 dB C.P. , is one of the few mixers with dynamic (similar to a passive type $+13 /+17 \mathrm{dBm}$), LO level only -10 dBm , it is used also as direct conversion of base band, image rejection mixer and modulator or demodulator I/Q complete with IF high dynamic post-amplifier and it doesn't need complicate diplexers with output terminations, SMD case		AD 831 AP	17,70
	up - down converter ultralinear mixer it is usabe both as up and down high dynamic converter IP3 up to +26 dBm , SMD MW-6 case LO + RF 500-2.500 MHz IF $10-2.500 \mathrm{MHz}$		CMY 210	7,80
QPSK I \& Q modulator	I/Q modulator, RF out $25-250 \mathrm{MHz}$ it is used in digital transmission combined with an UP converter (example HPMX 2006) it becomes a complete transmitter. Band I \& Q > 40 MHz , LO level -12 dBm , RF out -5 dBm		HPMX 2005	8,50
2 GHz UP converter $\mathbb{N}^{\text {filtro esterno }}$	IF input dc - 1 GHz --- RF output 800-2500 MHz ($\max 3$ GHz) it is an up converter for example it can be used as 2 GHz transmitter with modulation on IF port or as spectrum analyzers with dc-1GHz RF input and first IF > 1GHz, with internal power amplifier up to $+2 /+9 \mathrm{dBm}$, as LO it is enough -3 dBm because it has a LO internal amplifier.		HPMX 2006	$\left\|\begin{array}{cc} 1-4 & \text { pcs } \\ \mathbf{3 , 9 0} \\ 5-9 & \text { pcs } \\ \mathbf{3 , 5 0} \\ 10-30 & \text { pcs } \\ 31-99 & 2,90 \end{array}\right\|$
國	RF port up to 5 GHz , IF port up to 1 GHz , IF and LO ports are amplified so -5 dBm of LO are enough, it is optimized at $50-3000 \mathrm{MHz}$ with 8 dBG , it is usable from 5 to 5.000 MHz with 0 dBG at 6 GHz		IAM 81008	special offer $1-4$ pcs $\mathbf{3 , 3 0}$ $5-9$ $\mathbf{1 0 - 3 0}$ $\mathbf{1 0}$ pcs $\mathbf{2 , 9 0}$ $\mathbf{3 1 - 9 9}$
	as above but with HI-REL golden glass case $-55 /+125^{\circ} \mathrm{C}$		IAM 81018	19,50
	it is a complete RX front-end from 100 MHz to 2.5 GHz low noise, $\mathrm{Vc}=3 \mathrm{~V} / 16 \mathrm{~mA}$ RF + LO : $100 \mathrm{MHz}-2.5 \mathrm{GHz}$ LO 0 dBm LNA : $14 \mathrm{dBG} @ 100 \mathrm{MHz}-8 \mathrm{dBG} @ 2.5 \mathrm{GHz}$ IF : dc $-500 \mathrm{MHz}, 16$ pins SMD case		LMX 2216 M	$$
	LO + RF + IF dc - 80 MHz , typical modulator and demodulator for SSB and CW receivers, it is also a frequency doubler etc...	metallic case	MC 1496 MET	2,90
		DIL case	MC 1496 DIL	2,60
直	it is very wide band mixer both as Down and Up converter , RF input dc -2.000 MHz IF and LO output 10-2.000 MHz LO with internal driver it needs only 0 dBm , gain 10 dB		PMB 2330 T	$\begin{aligned} & 1-9 \text { pcs } 2,90 \\ & 10+\text { pcs } 2,40 \end{aligned}$

Type or family	description			cod.	price € each 1-10 pcs	
	it is a HBT high-performance technology I.C. that form a complete low-noise front-end for receiving from 400 to 2000 MHz , it is also usable from 10 to $2,500 \mathrm{MHz}, 3$ to 6 V power supply, 14-pins SMD case			RF 2411	$$	
	$\begin{gathered} 1^{\text {st }} \text { stage } \\ \text { LNA } \end{gathered}$	$1.6 \mathrm{dBNF} @ 800 \mathrm{MHz}$ - $2.6 \mathrm{dBNF} @ 1800 \mathrm{MHz}$ $10-14 \mathrm{dBG}$, due to the fact that it is not connected to the second stage it is possible to insert an RF filter between the 2 LNA stages, reverse insulation $>25 \mathrm{~dB}$				
	$\begin{gathered} 2^{\text {nd }} \text { stage } \\ \text { LNA } \\ \hline \end{gathered}$	$12-16 \mathrm{dBG}$$\mathrm{LO}=0 \mathrm{dBm}$				
	Mixer	$\begin{aligned} & \text { LO }=0 \mathrm{dBm}, \\ & \text { LO-RF + LO-IF insulation typ. }>25 \mathrm{~dB} \end{aligned}$		RF Microdevices List Price 9,6\$ each / 25 pcs		
	it is a high performances front-end for RX from 400 to 1300 MHz with low noise first stage, in fact the total noise figure (fist stage + mixer) is about $2,7 \mathrm{dBNF}$ that is equal to about $-120 /-118 \mathrm{dBm}$ of sesibility at $12 \mathrm{dBs} / \mathrm{N}$, it has a good thermal compensation within $+/-0.2 \mathrm{dBg}$ from -40 to $+85^{\circ} \mathrm{C}$ -- LNA first stage : 1.6dBNF @ 900 MHz 12dBG 1.6dBNF @ 430 MHz 15dBg -- mixer : 5-9 dBG -- LO only -7dBm because it is with internal buffer, LNA stage and mixer are not connected so it is possible to add an external filter, SMD case. Many application notes are available, see AN1777+1000+95021					
$\overbrace{4 \text { LNA }}^{\text {LF }}$ (Q)				SA 601 DK	3,90	
602 e 612	RF port up to 500 MHz , LO port up to 200 MHz , double-balanced mixer with 15dBG in HF and 10dBG in VHF . NE 602 and 612 are obsolete and out of production, they can be replaced by SA602. $N E \ldots=$ old versions $0^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$ SA... = new versions $-40^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}$		$\begin{aligned} & \text { DIL } \\ & \text { case } \end{aligned}$	SA 602 AN	$\begin{aligned} & 1-9 \text { pcs } \quad 2,80 \\ & 10+\text { pcs } 2,50 \end{aligned}$	
			$\begin{aligned} & \text { case } \\ & \text { smd } \\ & \text { so } \end{aligned}$	SA 602 AD	3,00	
$\underline{ }$	it is a double-balanced mixer up to 75 MHz for HF receivers or it can be used as balanced modulator for SSB transmitters, $-30 /+85^{\circ} \mathrm{C}$			SL 1641 C	7,80	
DILL	it is usable up to 200 MHz for HF and VHF, with external or internal self-oscillating LO, IF can be typically 10.7 MHz or 455 KHz , it is used also as limiter stage up to 50 MHz		DIL	SO 42 P	3,00	
0	It is a general purpose mixer with RF an LO up to 200 MHz , IF up to 30 MHz , it has an AGC out to drive some PIN diodes, internal LO			TDA 1062	2,00	
	it is a complete front end from 500 to 2400 MHz with many functions: $1.3-2,7 \mathrm{GHz}$ internal OL , IF amplifier with AGC , internal prescaler to drive a sinthesizer , etc... it was born as TV sat receiver, ultra-miniature SMD case			TDA 8010 M	$\begin{aligned} & 1-9 \text { pcs } \mathbf{3 , 0 0} \\ & 10+\text { pcs } \mathbf{2 , 6 0} \end{aligned}$	

