

MX·CDM, INC. MiXed Signal ICs

MX165C

Low Voltage CTCSS Encoder/Decoder with TX/RX Filters

Features

- Meets TIA/EIA-603 Standards
- 47 CTCSS Tones + Notone
- TX/RX Speech Filters
- Improved Sinad
- Serial or Parallel Programming
- Easy µP Interface
- Scanning on any Channel
- Standard 1MHz Xtal (See MX465 for 4MHz)
- Low Voltage 3.3V to 5.0V

Applications

- Mobile Radio Channel Sharing
- Scan Trunking
- Wireless Intercom Traffic Control
- Hookswitch Supervision
- Repeater Control

The MX165C CTCSS Encoder/Decoder is a low voltage, CMOS device that meets TIA/EIA-603 Standards. The MX165C will encode and decode the tones 159.8Hz, 183.5Hz, 189.9Hz, 196.6Hz, 199.5Hz, 206.5Hz, 229.1Hz, and 254.1Hz in addition to the 39 standard CTCSS tones, for a total of 47 CTCSS tones + Notone. With the incorporation of the on-chip TX and RX speech filter, the MX165C enhances voice/tone multiplexing by attenuating TX and RX speech 36dB at frequencies below 250Hz while passing signals > 300Hz with only 1dB of ripple. This not only minimizes CTCSS talk-off in the TX mode but also improves Hum and Noise performance in the RX mode.

Available in the following package styles: 24-pin TSSOP (MX165CTN), 24-pin SOIC (MX165CDW), 24-pin PLCC (MX165CLH), and 24-pin PDIP (MX165CP), the MX165C requires a single 3.3V to 5.0V supply and a 1MHz clock or crystal.

Section

CONTENTS

Page 2. Signal List 4

3. External Components	6
4. General Description	7
4.1 Description	7
4.2 I/O Conditions	7
4.3 Filter Response	8
4.4 Serial and Parallel Mode Timing	8
4.5 CTCSS Programming1	10
5. Performance Specification 1	
5.1 Electrical Performance 1	11
5.1.1 Absolute Maximum Ratings1	11
5.1.2 Operating Limits1	11
5.2 Packaging 1	14

MX•COM, Inc. Reserves the right to change specifications at any time and without notice

Block Diagram

Figure 1 : Block Diagram

Signal List

Pin No.	Signal	Туре	Description
1	V _{DD}	power	Positive supply. This pin should be bypassed to V_{SS} by a capacitor mounted close to the device pins.
2	XTAL/CLOCK	input	Input to the on-chip inverter used with a 1MHz Xtal or external clock source.
3	XTAL	output	Output of the on-chip inverter (clock output).
4	LOAD/LATCH	input	Controls 8 on-chip latches. It is used to latch RX / \overline{TX} , PTL, and D0-D5. A logic 1 applied to this input places the 8 latches in the 'transparent' mode. A logic 0 applied to this input places the 8 latches in the 'latched' mode. In Parallel Mode, data is loaded and latched by a logic 1-0 transition (see Figure 4). In Serial Mode, data is loaded and latched by a 0-1-0 strobe pulse on this pin (see Figure 5). Internally pulled to V _{DD}
5	D5 / SERIAL ENABLE 1	input	Data input D5 (Parallel Mode). A logic 1 applied to this input together with a logic 0 applied to D4/SERIAL ENABLE 2 will place the device in Serial Mode (see Figure 5). Internally pulled to V_{DD} .
6	D4/SERIAL ENABLE 2	input	Data input D4 (Parallel Mode). A logic 0 applied to this input together with a logic 1 applied to D5 / SERIAL ENABLE 1 will place the device in Serial Mode (see Figure 5). Internally pulled to V_{DD} .
7	D3 / SERIAL DATA IN	input	Data input D3 (Parallel Mode). In Serial Mode this pin becomes the serial data input for D5-D0, RX / \overline{TX} and PTL (see Figure 5). D5 is clocked first and PTL last. Internally pulled to V _{DD} .
8	D2 / SERIAL CLOCK	input	Data input D2 (Parallel Mode). In Serial Mode this pin becomes the SERIAL CLOCK input. Data is clocked on the positive going edge (see Figure 5). Internally pulled to V_{DD} .
9	D1	input	Data input D1 (Parallel Mode). Internally pulled to V _{DD} .
10	D0	input	Data input D0 (Parallel Mode). Internally pulled to V _{DD} .
11	V _{SS}	power	Negative supply.
12	DECODE COMPARATOR REF.	input	Internally biased to $V_{DD}/3$ or $2 V_{DD}/3$ via 1M resistors depending on the logic state of the RX TONE DECODE pin. RX TONE DECODE = 1 will bias this input $2 V_{DD}/3$; a logic 0 will bias this input $V_{DD}/3$. This input provides the DECODE COMPARATOR REFERENCE voltage, and the switching of bias voltages provides hysteresis to reduce 'chatter' under marginal conditions.
13	RX TONE DECODE	output	Gated output of the decode comparator. This output is used to gate the RX Audio path. A logic 0 on this pin indicates a successful decode and the DECODE COMPARATOR IN pin is more positive than the DECODE COMPARATOR REF. input (see Table 3).
14	DECODE COMPARATOR IN	input	Inverting input of the DECODE COMPARATOR. This pin is normally connected to the integrated output of the RX TONE DETECT line.
15	RX TONE DETECT	output	In RX mode this output will go to logic 1 during a successful decode. It must be externally integrated to control response and deresponse times (see Table 3).
16	TX TONE OUT	output	The CTCSS sinewave output appears on this pin under control of the RX / \overline{TX} pin. When not transmitting a tone, TX TONE OUT may be biased to V _{DD} /2. (see Table 3).
17	RX / TX	input	RX or TX modes selected in Parallel Mode (see Figure 4). In Serial Mode this function is serially loaded. This pin is internally pulled to V_{DD} via a 1M Ω resistor.

Pin No.	Signal	Туре	Description
18	PTL	input	In RX mode this pin operates as a 'Push To Listen' function by enabling the RX audio path, thus overriding the tone squelch function (Parallel Mode). In Serial Mode this function is loaded serially. Internal pull-up to V_{DD}
19	RX AUDIO OUT	output	High pass filtered RX AUDIO OUT. This pin outputs audio when RX TONE DECODE = logic 0, PTL = logic 1, or when Notone is programmed (see Table 4). In TX mode this pin is biased to $V_{DD}/2$.
20	TX AUDIO OUT	output	High pass filtered TX AUDIO OUT pin. In TX mode this pin outputs audio present at the TX AUDIO IN pin. In RX mode this pin is biased to $V_{\text{DD}}/2$
21	V _{BIAS}	output	Output of an internally generated V_{DD} /2 bias level that would normally be externally bypassed to V_{SS} via capacitor C6.
22	TX AUDIO IN	input	In TX mode TX AUDIO IN may be prefiltered, using the TX Audio path, thus helping to avoid talk-off due to intermodulation of speech frequencies with the transmitted CTCSS tone. Internally biased to $V_{DD}/2$.
23	RX AUDIO IN	input	Input to the audio high pass filter in RX mode. Internally biased to $V_{\text{DD}}/2$.
24	TONE INPUT	input	Input to the CTCSS tone detector. Internally biased to V _{DD} /2.

Table 1: Signal List

External Components

Figure 2 : Recommended External Components for Typical Application

Note 1	4.7MΩ	±10%
	560k Ω	±10%
	820kΩ	±10%
	0.1µF	±20%
Note 1	18pF	±20%
Note 1	33pF	±20%
Note 2	0.1µF	±20%
Note 2	0.1µF	±20%
	Note 1 Note 1 Note 2	λ λ 560kΩ 820kΩ 0.1μF 0.1μF Note 1 18pF Note 2 0.1μF

C6		0.47µF	±20%
C7	Note 2	0.1µF	±20%
C8	Note 2	0.1µF	±20%
C9	Note 2	0.1µF	±20%
C10	Note 2	0.1µF	±20%
C11	Note 2	0.1µF	±20%
D1		small signal	
X1	Note 1	1MHz	100ppm max.

Table 2: External Components

External Components Notes:

- The values specified for R1, C2, and C3 have been found to be satisfactory when used with a crystal (X1) whose equivalent series resistance is ≤ 1000Ω. For best results, a crystal oscillator design should drive the clock inverter input with signal levels of at least 40% of V_{DD}, peak to peak. Tuning fork crystals generally cannot meet this requirement. To obtain crystal oscillator design assistance, consult your crystal manufacturer.
- 2. The 0.1μ F value for the DC Blocking capacitors, C4, C5, C7, C8, C9, C10, and C11 is not a requirement. For the capacitors C4, C5, and C10, the input impedance is internal to the device and specified typical as $550k\Omega$. For the remaining capacitors external circuits will be important in determining the input impedance.

6

General Description

Description

Voice on shared radio channels are multiplexed with a subaudible CTCSS (Continuous Tone Controlled Subaudible Squelch) tone as a means of directing messages among user groups sharing the same RF frequencies. CTCSS modulates the transmitter with a discrete tone, from 39 standard CTCSS tones in the range (67.0Hz to 250.0Hz) according to TIA/EIA-603. There are an additional eight CTCSS tones not specified in TIA/EIA-603 that the MX165C will encode and decode. They are : 159.8Hz, 183.5Hz, 189.9Hz, 196.6Hz, 199.5Hz, 206.5Hz, 229.1Hz, and 254.1Hz, for a total of 47 CTCSS tones plus Notone.

The MX165C also incorporates TX/RX on chip speech filters. In early CTCSS designs, TX speech was not filtered from the CTCSS tone, rather the filtering was dependent upon the host transmitter's pre-emphasis network. At only 6dB/octave, the attenuation of speech components at higher CTCSS tones was only a few dB which resulted in talk-off (low frequency voice components unsquelching the receiver audio).

D0-D5	Tone	No Tone	Tone	Tone	Tone	No Tone
Input Pins Condition						
RX/TX	0	0	1	1	1	1
PTL	0	Х	0	1	Х	Х
Decode Comparator In	Х	Х	0	0	1	Х
Output Pins Condition						
RX TONE DETECT	0	0	0	0	1	Х
RX TONE DECODE	1	1	1	1	0	0
Result / Function						
Tone Transmitter Enabled	Yes	No (Bias)				
TX Audio Path Enabled	Yes	Yes	No	No	No	No
Tone Decode Enabled	No	No	Yes	Yes	Yes	Yes
RX Audio Path Enabled	No (Bias)	No (Bias)	No (Bias)	Yes	Yes	Yes
Notes	1	2	3	4	5	6

I/O Conditions

Notes:

- 1. Normal tone transmit condition.
- 2. Notone programmed in TX mode, tone transmit output set to $V_{DD}/2$. TX audio path enabled.
- 3. Normal decode standby.
- 4. Normal decode standby with PTL used to enable audio.
- 5. Normal decode of correct CTCSS tone condition, PTL has no effect.
- 6. Notone programmed in RX mode, tone transmit output (Bias). RX audio path enabled.
- 7. X = don't care

Table 3: Combinations of Input / Output conditions

8

Filter Response

Serial and Parallel Mode Timing

Figure 4 : Parallel Mode

Note : Serial bit 1 through bit 8 = D5, D4, D3, D2, D1, D0, RX/TX and PTL respectively. Load bit 1 first, bit 8 last

Figure 5 : Serial Mode

9

CTCSS Programming

	Tone				Programming Inputs						
	Nominal Frequency (Hz)	MX165C Frequency (Hz)	Δ f ₀ (%)	D5	D4	D3	D2	D1	D0	Hex	
	67.0	66.98	-0.029	1	1	1	1	1	1	3F	
	69.3	69.32	0.024	1	1	1	0	0	1	39	
	71.9	71.901	0.001	0	1	1	1	1	1	1F	
	74.4	74.431	0.042	1	1	1	1	1	0	3E	
	77.0	76.965	-0.046	0	0	1	1	1	1	0F	
	79.7	79.677	-0.029	1	1	1	1	0	1	3D	
	82.5	82.483	-0.021	0	1	1	1	1	0	1E	
	85.4	85.383	-0.020	1	1	1	1	0	0	3C	
	88.5	88.494	-0.007	0	0	1	1	1	0	0E	
	91.5	91.456	-0.048	1	1	1	0	1	1	3B	
	94.8	94.76	-0.042	0	1	1	1	0	1	1D	
	97.4	97.435	-0.036	1	1	1	0	1	0	ЗA	
	100.0	99.96	-0.040	0	0	1	1	0	1	0D	
	103.5	103.429	-0.069	0	1	1	1	0	0	1C	
	107.2	107.147	-0.05	0	0	1	1	0	0	0C	
	110.9	110.954	0.049	0	1	1	0	1	1	1B	
	114.8	114.84	0.035	0	0	1	0	1	1	0B	
	118.8	118.793	-0.006	0	1	1	0	1	0	1A	
	123.0	123.028	0.023	0	0	1	0	1	0	0A	
	127.3	127.328	0.022	0	1	1	0	0	1	19	
	131.8	131.674	-0.095	0	0	1	0	0	1	09	
	136.5	136.612	0.082	0	1	1	0	0	0	18	
	141.3	141.323	0.016	0	0	1	0	0	0	08	
	146.2	146.044	-0.107	0	1	0	1	1	1	17	
	151.4	151.441	0.027	0	0	0	1	1	1	07	
	156.7	156.875	0.112	0	1	0	1	1	0	16	
•	159.8	159.936	0.085	1	1	0	0	0	1	31	
	162.2	162.311	0.069	0	0	0	1	1	0	06	
	167.9	167.708	-0.114	0	1	0	1	0	1	15	
	173.8	173.936	0.078	0	0	0	1	0	1	05	
	179.9	179.654	-0.137	0	1	0	1	0	0	14	
•	183.5	183.680	0.098	1	1	0	0	1	0	32	
	186.2	186.289	0.048	0	0	0	1	0	0	04	
•	189.9	190.069	0.089	1	1	0	0	1	1	33	
	192.8	192.864	0.033	0	1	0	0	1	1	13	
•	196.6	196.329	-0.138	1	1	0	1	0	0	34	
•	199.5	199.312	-0.094	1	1	0	1	0	1	35	
	203.5	203.645	0.071	0	0	0	0	1	1	03	
•	206.5	206.207	-0.142	1	1	0	1	1	0	36	
	210.7	210.848	0.070	0	1	0	0	1	0	12	
	218.1	217.853	-0.113	0	0	0	0	1	0	02	
	225.7	225.339	-0.160	0	1	0	0	0	1	11	

© 1997 MX•COM Inc. www.mxcom.com Tele: 800 638-5577 910 744-5050 Fax: 910 744-5054 Doc. # 20480102.008 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

	Tone					Progra	mming I	nputs		
	Nominal Frequency (Hz)	MX165C Frequency (Hz)	Δ f ₀ (%)	D5	D4	D3	D2	D1	D0	Hex
•	229.1	229.279	0.078	1	1	0	1	1	1	37
	233.6	233.359	-0.103	0	0	0	0	0	1	01
	241.8	241.970	0.070	0	1	0	0	0	0	10
	250.3	250.282	-0.007	0	0	0	0	0	0	00
•	254.1	254.162	0.024	1	1	1	0	0	0	38
	Notone		N/A	1	1	0	0	0	0	30
	Serial input mode		N/A	1	0	Data	Clock	Х	Х	2X

• Not specified in the TIA/EIA tone set

Table 4: CTCSS Tones

Performance Specification

Electrical Performance

Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the device. Operation of the device outside the operating limits is not implied.

General	Min.	Max.	Units
Supply (V _{DD} - V _{SS})	-0.3	7.0	V
Voltage on any pin to V _{SS}	-0.3	V _{DD} + 0.3	V
Current			
V _{DD}	-30	30	mA
V _{SS}	-30	30	mA
any other pins	-20	20	mA
TN / DW / LH / DIP Package			
Total Allowable Power Dissipation at T _{AMB} =25°C		800	mW
Derating above 25°C		10	mW/°C above 25°C
Storage Temperature	-55	125	°C
Operating temperature	- 40	85	°C

Operating Limits

Correct operation of the device outside these limits is not implied

	Min.	Max.	Units
Supply (V _{DD} - V _{SS})	2.7	5.5	V
Xtal Frequency	1.0	1.0	MHz
Operating Temperature	-40	85	°C

© 1997 MX•COM Inc. www.mxcom.com Tele: 800 638-5577 910 744-5050 Fax: 910 744-5054 Doc. # 20480102.008 4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

Operating Characteristics

For the following conditions unless otherwise specified

 $\begin{array}{l} V_{DD} = 3.3V \, / \, 5.0V \mbox{ at } T_{AMB} = 25^{\circ} C, \ V_{SS} = 0V, \\ Xtal \ Frequency = 1.0 \ MHz, \ 100 \mbox{ppm max}. \\ (Over the life of the Xtal the operating range may vary from 100 \mbox{ppm up to 1000 \mbox{ppm}}) \\ 0dB \ ref. = 750 \mbox{mV}_{RMS} \ (\mbox{proportional to } V_{DD}; \ see \ note \ 17) \end{array}$

Composite Signal:

1kHz test tone = $300 \text{mV}_{\text{RMS}}$, f₀ CTCSS tone = $30 \text{mV}_{\text{RMS}}$, $75 \text{mV}_{\text{RMS}}$ Noise (band limited to 6kHz Gaussian)

			_		
	Notes	Min.	Тур.	Max.	Units
Static Values					
Supply voltage		2.7	3.3/5.0	5.5	V
Supply current					
$V_{DD} = 5.0V$			3.2	4.2	mA
$V_{DD} = 3.3V$			1.1	1.6	mA
Rx Monitor			2.0		mA
Analog input impedance	18	480	550		kΩ
Analog output impedance	18		400	1000	Ω
Digital Input impedance	1,18	25	40		kΩ
Input logic 1	1	70%V _{DD}			V
Input logic 0	1			30%V _{DD}	V
Output Logic 1 source = 0.1mA	2	80%V _{DD}			V
Output Logic 0 sink = 0.1mA	2			20%V _{DD}	V
Dynamic Values					
Speech filter					
Total harmonic distortion	5,8,19		0.7	1.5	%
Output noise level (input ac short circuit, audio switch enabled)	8,18		0.5	1.0	mV _{RMS}
Sinad	8,9	40	50		dB
Spurious emissions	18			- 48	dB
Cutoff frequency			300		Hz
Bandpass ripple	8		1	1.8	dB
Stopband attenuation <250Hz	7,8,19	33	36		dB
Passband gain 1kHz		- 0.5	0	0.5	dB
TX/RX isolation	5		60		dB
Encoder					
Tone output level	12	-1.0	0	1.0	dB
Tone Frequency Accuracy (f error)		- 0.3		0.3	%f ₀
Risetime to 90% nominal output					
f ₀ >100Hz	4,10		15	75	ms
f ₀ <100Hz	4,10		45	120	ms
Total Harmonic Distortion	19		1.5	2	%

	Notes	Min.	Тур.	Max.	Units
Decoder					
Pure tone decode threshold	19		7	15	mV _{RMS}
Composite signal decode threshold	3			30	mV _{RMS}
Decode input signal level	16	-20		3.5	dB
Pure tone decode response time	13,14	95	115	140	ms
Pure tone decode deresponse time	13,15	95	130	170	ms
Decode response time	3,6,10			250	ms
Deresponse time	3,10		180	250	ms
Decode selectivity:					
Upper decode band edge	3,11,19,20	1.005f ₀	1.015f ₀	0.995f ₀₊₁	Hz
Lower decode band edge	3,11,19,20	1.005f ₀₋₁	0.985f ₀	0.995f ₀	Hz
Serial / Parallel Inputs					
Parallel Set Up Time (t _{SP})		400			ns
Load / Latch Pulse Width (t _L)		400			ns
Serial Clock Pulse Width (t _C)		400			ns
Serial Data Set-Up Time (t _{SS})		400			ns
Serial Data Hold Time (t _H)		400			ns
Serial Enable Time (t ₁)		400			ns
Serial Load / Latch Set-Up Time (t ₂)		400			ns
Serial Clock Frequency			1		MHz

Operating Characteristics Notes:

- 1. Refers to RX/TX, PTL, Decode Comparator Input, D0-D5.
- 2. All logic outputs.
- 3. Composite signal test condition.
- 4. Any programming tone and $R_L = 10k\Omega$, $C_L = 15pF$.
- 5. With an input level of 0dB @1kHz
- 6. $f_0>100$ Hz (for 100 Hz> $f_0>67$ Hz: t=100/ f_0 Hz x 250ms)
- 7. See Figure 3.
- 8. Measured in a 30kHz bandwidth.
- 9. With an input level of -3.5dB @1kHz
- 10. Per TIA/EIA-603.
- 11. Per TIA/EIA-603, device will not decode adjacent TIA/EIA-603 Tones.
- 12. Tone output level is proportional to V_{DD} .
- 13. f₀=156.7Hz @ -20dB.
- 14. Typically 12.5 Tone Cycles + 40ms.
- 15. Typically 7 Tone Cycles + 90ms.
- 16. Max composite signal is 3.5dB with: Noise (band limited 6kHz Gaussian) = -12dB ref. to 1kHz test tone f_0 CTCSS tone = -20dB ref. to 1kHz test tone
- 17. For maximum dynamic range, set audio level to 0dB, V_{DD} x150mV_{RMS}, using minimum V_{DD} under which system is intended to work. (e.g. for a 2.7V system, use 0dB equal to 405mV_{RMS}).
- 18. By characterization only.

19. Batch sampled only

20. For example, if: $f_0 = 100.0$ Hz ($f_{0-1} = 97.4$ Hz $f_{0+1} = 103.5$ Hz)

Decode Selectivity	Min	Тур	Max	Unit
Upper Decode Band Edge	100.5	101.5	102.98	Hz
Lower Decode Band Edge	97.89	98.5	99.5	Hz

Packaging

Figure 6: 24-pin TSSOP Mechanical Outline: Order as part no. MX165CTN

Figure 7: 24-pin SOIC Mechanical Outline: Order as part no. MX165CDW

--- F -→

← E → ← B →		Package Tolerances			
		DIM.	MIN.	TYP.	MAX.
''4 5		A	0.380 (9.61)		0.409 (10.40)
DA 1 E		В	0.380 (9.61)		0.409 (10.40)
	, ⊨=÷J	С	0.128 (3.25)		0.146 (3.70)
↓↓↓↓↓↓↓↓↓	₩ X E	D	0.417 (10.60)		0.435 (11.05)
\		E	0.417 (10.60)		0.435 (11.05)
		F	F 0.250 (6.35)		5)
PIN 1		G	0.250 (6.35)		
				023 (0.58)	
P		J	0.018 (0.45)	-	0.022 (0.55)
∎ → ←		K	0.047 (1.19)		0.048 (1.22)
		Р	0.049 (1.24)		0.051 (1.30)
盘		Т	0.006 (0.152)		0.009 (0.22)
五 五 五 五 五 五 五 五 五 五 五 五	X	W	30°	45°	
븀 븀 너		Y		6°	
		NOTE : All dimensions in inches (mm.) Angles are in degrees			

Figure 8: 24-pin PLCC Mechanical Outline: Order as part no. MX165CLH

Figure 9: 24-pin PDIP Mechanical Outline: Order as part no. MX165CP

CML Product Data

In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (*Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd)* have undergone name changes and, whilst maintaining their separate new names (*CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd*), now operate under the single title CML Microcircuits.

These companies are all 100% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

CML Microcircuits (USA) [formerly MX-COM, Inc.] Product Textual Marking

On CML Microcircuits (USA) products, the **'MX-COM'** textual logo is being replaced by a **'CML'** textual logo.

Company contact information is as below:

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com

COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050, 0800 638 5577 Fax: +1 336 744 5054 us.sales@cmlmicro.com www.cmlmicro.com

No 2 Kallang Pudding Road, 09-05/ 06 Mactech Industrial Building, Singapore 349307 Tel: +65 7450426 Fax: +65 7452917 sg.sales@cmlmicro.com www.cmlmicro.com