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Abstract 
It is well known that the resistive and reactive components of an impedance, including the sign of 
the reactance, can be determined by placing a resistance and a reactance in series with the 
impedance and making five scalar voltage measurements across pairs of points in the resulting 
network.  It is also possible, using suitable linear combinations of the same 5 measurements, to 
determine impedance magnitude, phase tangent, conductance, susceptance, power factor, and (by 
making the reference resistance equal to the target load resistance) reflection coefficient and SWR.  
This article gives expressions for all of these quantities; and includes an error analysis in each 
instance to show how a standard deviation can be calculated.  The error functions are well-behaved 
except for those related to the voltage reflection coefficient, the expression for which is not 
differentiable when its value is in the region of zero.  A solution to that problem is to place a 
potential divider across the generator and make an additional bridge voltage measurement, this 
configuration being the same as is used in antenna analysers and return loss bridges.
     Linear detectors and DC signal processing circuits are also discussed.  Although not suitable for 
permanent insertion into a transmission line; the network can be used for simultaneous 
determination of load resistance, conductance and phase tangent, as is required for guaranteed 
convergence of impedance matching procedures involving series and parallel reactances.

1 Ottery St Mary, Devon, England. 
2 Please check the author's website to make sure you have the most recent version of this document and the 

accompanying worksheet file: http://www.g3ynh.info/ 
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Introduction 
In an article in QST magazine in 1965, Heathkit design engineer Doyle Strandlund described a 
method by which the resistance and reactance (including sign) of an unknown impedance can be 
determined using only scalar measurements3.  The technique involves placing a resistance and a 
reactance in series with the impedance, driving the combination from the output of a radio 
transmitter (via an attenuator); and using shunt-diode detectors to measure the voltages across the 
series elements and from the junctions between the elements and ground.  The readings from such 
detectors are, of course, peak voltage magnitudes (neglecting diode non-ideality), devoid of phase 
information; but the data obtained can nevertheless be analysed to find the real and imaginary 
components of the impedance under test.
     Strandlund offered a graphical method for determining the test impedance; but the problem can 
easily be turned into a set of formulae, and so the chart-plotting approach fell out of favour with the 
advent of the personal computer4.  The method can also be updated by the inclusion of diode non-
linearity and temperature compensation circuits, as was outlined by M E Gruchalla5.  Gruchalla also
gave a derivation of formulae for R and X, but did not include an error analysis.
     To see the circuit only as a type of impedance meter however misses many of its features.  It 
might, more interestingly, be regarded as a prototype for set of circuit configurations that can be 
used to acquire data for the calculation of impedance (R+jX), admittance (G+jB), magnitude, phase
angle and power factor.  Moreover, if the reference resistance is chosen to be the same as the target 
load resistance, it can be used to calculate reflection coefficient and SWR.  Incidentally, with the 
reference reactance set to zero, it corresponds to the method by which low-cost antenna analysers 
extract impedance magnitude from the reference and measurement arms of an unbalanced 
Wheatstone bridge.
     Here we re-analyse the circuit for its stock of possibilities, derive the error functions, and show 
how it can be used to make a match-meter, i.e., a measuring device for R, G and Tanφ  (i.e., X/R)  
that can be used to guarantee the convergence of impedance matching procedures involving reactive
π, T and L-networks.6.

3 Amateur measurement of R+jX, Doyle Strandlund, QST, June 1965, p24-27.
4 Measuring RF Impedance Using the Three Meter Method and a Computer, Peter Dodd, ARRL Antenna 

Compendium, Vol 4. 1995, p175-179.
More on the 3-Meter Impedance Measuring Bridge, Peter Dodd, ARRL Antennan Compendium, Vol 5, 1996, 
p144-147.
[ 'Three meter method' is a misnomer.  The articles are about the five voltage method under discussion here].

5 Complex Impedance Measurement Using only Scalar Voltage Measurements, M E Gruchalla, Communications 
Quarterly (CQ), Fall (Oct.) 1998, p33-43.
A comment on Complex Impedance Measurements, Peter Dodd, CQ, Spring 1999, p3.

6 Automatic Tuning of Antennae, M J Underhill and P A lewis, SERT Journal, Vol 8, Sept. 1974, p183-184.
See also:  www_g3ynh_info\zdocs\z_matching\index.html
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1.   Network voltages 
The theoretical network is shown below, with the five voltages that are usually measured marked in 
black.  The reference reactance Xref  is drawn as a capacitor because it should ideally be a pure 
reactance, in which case a low-loss capacitor seems a better choice than an inductor.  An additional 
voltage VXR  is also shown, in grey.  This (as was pointed out by Strandlund) might possibly be used
to compute a correction for the loss resistance of the reactance (although it might be difficult to 
achieve a statistically valid result).

With suitable attention to the DC return arrangements, all of the voltages shown can be measured 
using shunt-diode detectors and a high-impedance DC voltmeter.  Since the detectors cannot 
preserve phase information however, what we actually measure (neglecting scale factors, and 
assuming linearity correction) is a set of magnitudes: |VS| , |VR| , |VXZ| , |VX| , |VZ| and, optionally 
|VXR|.

Now notice that all of the elements are in series and so share a common current I.  Hence, for 
example, with the impedance under test defined as R+jX, we can write an expression for the source 
voltage VS  as:

VS = I [ R + Rref + j( X + Xref ) ]

Also, noting that the magnitude of the product of two phasors is the product of the magnitudes, we 
can represent the detected voltage as follows:

|VS| = |I| √{ ( R + Rref  )2 + ( X + Xref  )2 }

We can also convert this into an impedance magnitude analog by noting that |I| is just a common 
scale factor, so that: 

|VS| / |I| = |VS / I| = √{ ( R + Rref  )2 + ( X + Xref  )2 }

Also, it will usually be convenient to eliminate square-root symbols and work with the squares of 
magnitudes, thus:

|VS / I|2 = ( R + Rref  )2 + ( X + Xref  )2

and sometimes we will want to multiply-out the brackets:

|VS / I|2 = R2 + Rref 
2 + 2 R Rref  + X2 + Xref

2 + 2 X Xref 

Using this approach we can write-out a set of formulae for the various available analogs.  They are 
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as follows:

Table 1.

|VS / I|2 = ( R + Rref )2 + ( X + Xref )2

            = R2 + Rref 
2 + 2 R Rref  + X2 + Xref

2 + 2 X Xref 
(1)

|VXZ / I|2 = R2 + ( X + Xref )2

              = R2 + X2 + Xref
2 + 2 X Xref 

(2)

|VZ / I|2 =  R2 + X2 (3)

|VR / I|2 =  Rref 
2 (4)

|VX / I|2 =  Xref
2 (5)

|VXR / I|2 = Xref
2 + Rref 

2 (6)

There are also two important linear combations that will find recurrent use:

Table 2.

[ |VS|2 - |VXZ|2 - |VR|2 ] / |I|2 = 2 R Rref (1) - (2) - (4)

[ |VXZ|2 - |VZ|2 - |VX|2 ] / |I|2 = 2 X Xref (2) - (3) - (5)

By considering the expressions in the tables above, we can see that any formula for an impedance or
admittance attribute or component must be formed as a quotient (a fraction) in order to eliminate the
current (and the neglected scale factor due to rectification).  Also, equations (4) and (5) are the 
current-squared analogs, because they can be traded for |I|2  against the known values of the 
reference components, for which reason they will be seen to appear in the denominators of the 
expressions for X and R.  

Note that the phasors VR and VX should be at right angles to each other.  Therefore VXR is the 
hypotenuse of the right-angled triangle they should form.  This gives a checksum for the purity of 
the reference elements, i.e., by Pythagoras: 

|VR |2 + |VX|2 = |VXR|2

Any statistically significant breakdown of this relationship signifies a
problem with the reference standards.
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2.   Resistance 
By inspection of tables 1 & 2, the expression for R is obtained using [ (1) - (2) - (4) ] / (4) ,  which 
gives:

[ |VS|2 - |VXZ|2 - |VR|2 ] / |I|2

|VR / I|2 
=

2 R

Rref 

The common current cancels throughout and so we have:

R =
Rref 

2

┌
│
│
└

|VS |2 - |VXZ |2 - |VR |2

|VR |2 

┐
│
│
┘

(2.1)

which simplifies to:

R =
Rref 

2

┌
│
│
└

|VS |2 - |VXZ |2

|VR |2 
 - 1

┐
│
│
┘

(2.1a)

An special property of this formula is that it does not use the voltages |VX| and |VZ|.  In fact, if we 
were to set Xref  to zero (i.e., short it out), it would seem to make no difference to the result.  This 
means that the resistive component of an impedance can be determined by making scalar voltage 
measurements on the the reference and measuring arms of an unbalanced Wheatstone bridge.  
Although Xref   makes no difference to this calculation however, its value, as we will see in the next 
section, does have an effect on the accuracy of the result.

2a. Error analysis and simulation 
If we are to make use of any of the quantities extracted from the voltage measurements, we must 
attach an uncertainty (i.e., usually, a standard deviation) to every result.  Therefore it is necessary to 
perform an error analysis in each instance.  A carefully explained analysis of the resistance formula 
will serve to demonstrate the technique, which will thereafter be applied without further 
justification.  The error function, as in every other instance, will also guide us in how to optimise 
the measurement parameters to get the most accurate reading.

Whenever a quantity is determined by combining a number of measurements, each measurement 
makes a contribution to the uncertainty in the result.  The uncertainty contribution from a given 
measurement is equal to the rate of change of the quantity with respect to the measurement, 
multiplied by the uncertainty in the measurement.  Thus, looking at the resistance formula, equation
(2.1), and using a fairly standard statistical notation, we can write:

δRRref = σRref  ∂R/∂Rref

Where δRRref  is the uncertainty contribution to R due to uncertainty in Rref ,  σRref  is the absolute 
(rather than the percentage) standard deviation of the known value of Rref ,  and ∂R/∂Rref  is the 
partial derivative of R with respect to Rref  (i.e., the result of differentiating R with respect to Rref 
with all of the other variables held constant).  The expression is true provided that the formula is 
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differentiable in the region of interest, and provided that the parameter uncertainty is reasonably 
small compared to the magnitude of the derivative.
     Now, repeating the  process for the other parameters (keeping the expressions legible by 
dropping the magnitude brackets in subscripts) we get:

δRVS = σVS  ∂R/∂|VS|

δRVXZ = σVXZ  ∂R/∂|VXZ|

and

δRVR = σVR  ∂R/∂|VR|

Thus, in the case of resistance, we have four uncertainty contributions, which must be incorporated 
into the formula for the standard deviation.  How to do that depends on whether the measurements 
are correlated or uncorrelated.  If two measurements are correlated, then the uncertainty in one is 
related to the uncertainty in the other.  This can happen, for example, when the two measurements 
are made using the same meter.  It then depends on the signs of the derivatives, whether these 
correlated errors augment or tend to cancel each other.  If we take pains to remove such systematic 
errors however, then what is left is random uncertainty; and in that case, the error in one quantity is 
not influenced by the errors in any of the others.  When all of the errors are unrelated, then they are 
orthogonal, i.e., their contributions act like a set of vectors in a multi-dimensional space, each at 
right angles to all of the others.  Hence, we can find the magnitude of the overall uncertainty by 
successive application of Pythagoras's theorem.  This operation is accomplished simply by adding 
the squares of all of the uncertainty contributions and taking the square root7.  Hence, for the 
resistance measurement:

σR = √{ ( σRref ∂R/∂Rref )2 + ( σVS ∂R/∂|VS| )2 + ( σVXZ  ∂R/∂|VXZ| )2 + ( σVR  ∂R/∂|VR| )2 }

The derivatives can mostly be determined by inspection, and a check on the logic can be had by 
noting that the quantities in brackets in the expression above (prior to squaring) have the same 
dimensions as the overall uncertainty.  An absolute measurement uncertainty has the dimensions of 
the measurement, and that dictates the dimensions of the derivative.  A derivative that relates a 
quantity in volts to a quantity in ohms (for example) must have dimensions of [ohms/volt]  
(i,e., [volts] × [ohms/volt] = [ohms] ).

If we let:

UR = [ ( |VS|2 - |VXZ|2 ) / |VR|2 ] - 1

(where U is just a spare letter, rarely allocated to electrical quantities in English texts) then, using 
the standard school differentiation formula: d(axn )/dx = anxn-1 ;

∂R/∂Rref = UR / 2 [ dimensionless ]

∂R/∂|VS| = |VS| Rref  / |VR|2 [ ohms / volt ]

∂R/∂|VXZ| = -|VXZ| Rref  / |VR|2 [ ohms / volt ]

7 This is explained in more detail in the article Scientific Data Analysis (by DWK), 
http://www.g3ynh.info/zdocs/math/data_analy.pdf
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and

∂R/∂|VR| = - Rref  ( |VS|2 - |VXZ|2 ) / |VR|3 [ ohms / volt ]

There is not much point in combining all of this into a single long expression, but we can collect it 
all for easy reference as follows:

R = UR Rref  / 2

where: 

UR = [ ( |VS |2 - |VXZ|2 ) / |VR |2 ] - 1

(2.1b)

σR = √{ ( σRref ∂R/∂Rref )2 + ( σVS ∂R/∂|VS| )2 + ( σVXZ  ∂R/∂|VXZ| )2 + ( σVR  ∂R/∂|VR| )2 }

where

∂R/∂Rref = UR / 2

∂R/∂|VS| = |VS| Rref  / |VR|2 

∂R/∂|VXZ| = -|VXZ| Rref  / |VR|2 

∂R/∂|VR| = - Rref  ( |VS|2 - |VXZ|2 ) / |VR|3 

(2.1u)

What the error function (2.1u) tells us by inspection is that the uncertainty of the measurement will 
explode when the voltage across the reference resistor is small relative to the other voltages.  Apart 
from that however, the easiest way to find-out more is to simulate the measurement process over a 
range of parameters using realistic standard deviations for the reference resistance and the voltage 
measurements.  This has been done in the Open Document Spreadsheet8 file YZ_scalar_sim.ods 
(sheet 1).
     One reason for calculating intermediate results for the error function, rather than evaluating the 
whole thing in one go, is that there is a great deal to be learned by seeing the numerical values of 
the derivatives.  Notice in the quantity UR  in formula (2.1b), that the process of calculating R 
involves subtracting two fairly large quantities to obtain a small quantity, and then inflating the 
value again by performing a division.  The problem with such procedures is that the measurement 
errors are largely random, and so they are not suppressed by the subtraction process, but they are 
amplified by the division.  Hence the derivatives of the resistance with respect to the measured 
voltages are large.  UR  itself is fairly small however, and so the derivative of the resistance with 
respect to the reference resistance is small.  The outcome is that the measurement is not strongly 
affected by the uncertainty in Rref , which is a pity because this resistance is easily measured using a 
good DMM.  Instead, it turns out that accurate voltage measurement is critical.
     The spreadsheet is easily modified, but for the sake of this investigation, simulations were 
carried out in the region of 50 Ω, with an assumed standard deviation (SD) of resistance 
measurement of 0.1%, and an assumed SD of voltage measurement of 0.5%.  Using a straight 
percentage uncertainty is not necessarily realistic because, in addition to a scale error, most meters 
have an offset or zeroing error and ADCs have a quantisation error.   This means that measurements 
become more inaccurate, in percent, for small readings.  The consequence of using only a fixed 

8 Opens in Open Office, available free from www.openoffice.org
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percentage error is therefore that the the result does not vary with source voltage, whereas in reality 
it will get worse at low voltages.  A source voltage of 10 V was adopted however as a reasonable 
compromise; usually sufficient to overwhelm any offset errors, and in observance of diode VRM  
limits and the need to avoid excessive power dissipation.
     The simulation procedure involves using the source voltage and the input values of the unknown 
and reference resistances and reactances to calculate the magnitude of the common current.  The 
current is then used to calculate the voltages that will appear across the measurement points. These 
voltages are then combined with the input percentage standard deviation to obtain the absolute SD 
of each voltage (i.e., the SD in volts)9.  The voltages are also used to calculate the resistance R (as a 
check of the coding), the function UR , and the derivatives.  The derivatives are combined with the 
absolute voltage uncertainties in the error function σR , and the result is converted back into a 
percentage for graph plotting.  The spreadsheet is configured so that either R, Rref , X, or Xref  can be
used as the x-axis, so that the effect of varying one parameter while holding the others constant can 
be seen.  Constant reactance, of course, is not usually realistic, but it can be contrived by component
adjustment or by changing frequency.

The findings from the simulation are fairly well summarised by the graphs above.  With voltage 
measurements accurate to ±0.5%, the best possible uncertainty in the resistance determination is 
just a little over ±2.5% (SD).  The circumstances under which this can be obtained however are 
somewhat restricted.  The best outcome occurs when there is a conjugate match between the 
impedance under test and the reference elements.  Thus, in the set of simulations shown in the 
graphs, where the test impedance is 50+j50 Ω, the optimum reference resistance is 50 Ω, and the 
optimum reference reactance is -50 Ω.  As can be seen in the right-hand graph, the degradation of 
accuracy can be particularly severe if Rref  is substantially less than R, but the error curve flattens 
out, and un-cancelled reactance is less deleterious, when Rref  is greater than R.
     The simulation also confirms the qualitative observation made earlier, which is that it is best to 
make measurements in circumstances that give a relatively large voltage across Rref .  Thus the 
relatively flat error curve when Rref  is several times larger than R.
     Overall, it is evident that the method is a little too idiosyncratic to be adopted as a general-
purpose AC resistance measurement technique; but it can give reasonable accuracy under some 
circumstances, and it has the virtue that the accuracy will improve progressively if the purpose of 
measuring the test impedance is so that it can be adjusted to match a target value.  In other words, 

9 This is the point at which offset and quantisation errors (which are fixed quantities for a given measurement method)
might also be added.
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the method is the basis of an antenna-system analyser, as those who have been using it for that 
purpose will obviously attest.  An assertion made elsewhere however, that the value of the reference
reactance is unimportant, is shown to be incorrect.
     A good way to verify a spreadsheet analysis, incidentally, is to code the problem independently 
and check that both methods agree.  Also, a large array of intermediate results is not needed in 
practice.  Consequently, the following Open Office Basic10 macros were written (and they do indeed
confirm the calculations discussed earlier).  The calling arguments should be self-explanatory.

Function Scalarvolt_R(ByVal Rref as double, Vs as double, Vxz as double, _
VR as double) as double
'Calculates the resistive component (R) of an impedance using the scalar voltage method
Scalarvolt_R  = 0
if VR = 0 then exit function
Scalarvolt_R = 0.5*Rref*( ( (Vs^2 - Vxz^2 )/ VR^2 ) - 1)
End function

Function SV_sigmaR(ByVal sigmaRref as double, Rref as double, sigmaV as double, _
offsetV as double, Vs as double, Vxz as double, VR as double) as double
'calculates a standard deviation for R
'SigmaRref and sigmaV are input as percentages and converted into absolute uncertainties.
'OffsetV is the voltage measurement offset (or zeroing) error, in volts.
'The function returns an absolute uncertainty (in Ohms).
If VR = 0 then
SV_sigmaR = 1E12
Else
sigmaRref = Rref*sigmaRref/100
Dim sigmaVs as double, sigmaVxz as double, sigmaVR as double, UR as double
sigmaVs = Vs*sigmaV/100 + offsetV
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
UR = ((Vs^2 - Vxz^2 )/ VR^2 ) - 1
Dim derivRref as double, derivVs as double, derivVxz as double, derivVR as double
derivRref = UR / 2
derivVs = Vs*Rref/VR^2
derivVxz = -Vxz*Rref/VR^2
derivVR = -Rref*((Vs^2 - Vxz^2)/VR^3)
SV_sigmaR = Sqr((sigmaRref*derivRref)^2 + (sigmaVs*derivVs)^2 _
+ (sigmaVxz*derivVxz)^2 + (sigmaVR*derivVR)^2)
End if
End function

Note that if |VR| = 0,  then the uncertainty in R is infinite, and so the error function returns a value of
1012 Ω to ensure that continuous line graphs are plotted correctly.  Note also that voltage offset error
can be included if so desired.  For example, for a 10-bit ADC with a 10 V reference and an offset 
error of ±1 LSB, the offset error in volts is 10/1024 = 0.01 V.

10 Open Office BASIC programming guide can be found at  wiki.openoffice.org/wiki/Documentation/BASIC_Guide.
To view, edit and copy the basic macros in the accompanying spreadsheet file, go to the ' Tools / Macros / Organise 
Macros / OpenOffice Basic ' menu.. and select 'Edit'.
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3.   Reactance: 3-V method
There are two ways in which a reactance formula can be obtained.  The most obvious choice is the 
one that produces an expression that is the same as the resistance formula except for a change of 
variables.  From the analogs in tables 1 & 2, the combination is [ (2) - (3) - (5) ] / (5) .  This gives:

|VXZ|2 - |VZ|2 - |VX|2

|VX|2 
=

2 X

Xref 

Rearranging to bring out the reactance then gives:

X =
Xref 

2

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VX|2 

┐
│
│
┘

(3.1)

which can be simplified:

X =
Xref 

2

┌
│
│
└

|VXZ|2 - |VZ|2

|VX|2 
 - 1

┐
│
│
┘

Three voltage
(3-V) method

(3.1a)

This uses three voltage measurements to determine X, and so we will refer to it as the 3-V method.  
Also, unlike most reactance measuring methods that rely on scalar voltage samples, this gives us the
sign of the reactance provided that we know the sign of Xref .

The error function, by the same logic as used in the previous section, is:

σX = √{ ( σXref ∂X/∂Xref )2 + ( σVXZ ∂X/∂|VXZ| )2 + ( σVZ  ∂X/∂|VZ| )2 + ( σVX  ∂X/∂|VX| )2 }

If we let:

UX = [ ( |VXZ|2 - |VZ|2 ) / |VX|2 ] - 1

Then the derivatives are identical in form to those for the resistance case:

∂X/∂Xref = UX / 2 [ dimensionless ]

∂X/∂|VXZ | = |VXZ| Xref  / |VX|2 [ ohms / volt ]

∂X/∂|VZ| = -|VZ| Xref  / |VX|2 [ ohms / volt ]

and

∂X/∂|VX| = - Xref  ( |VXZ|2 - |VZ|2 ) / |VX|3 [ ohms / volt ]

Collecting it all we have:
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X = UX Xref  / 2

where: 

UX = [ ( |VXZ|2 - |VZ|2 ) / |VX|2 ] - 1

(3.1b)

3-V

σX = √{ ( σXref ∂X/∂Xref )2 + ( σVXZ ∂X/∂|VXZ| )2 + ( σVZ  ∂X/∂|VZ| )2 + ( σVX  ∂X/∂|VX| )2 }

∂X/∂Xref = UX / 2

∂X/∂|VXZ | = |VXZ| Xref  / |VX|2 

∂X/∂|VZ | = -|VZ| Xref  / |VX|2 

∂X/∂|VX | = - Xref  ( |VXZ|2 - |VZ|2 ) / |VX|3 

(3.1u)

An error simulation for the 3-voltage method for reactance is given in the spreadsheet file 
YZ_scalar_sim.ods (sheet 2).  Once again, the spreadsheet calculation is verified against separately
coded Basic macro functions.  In section 5 however, we will also examine an alternative four 
voltage (4-V) method that eliminates the reference reactance from the calculation.  The two 
methods give very similar results, and so we will compare them in that section.

The Basic macro functions for X and σX using the 3-V method are given on the next page.  Except 
for a change of variables, the functions are mathematically identical to the corresponding resistance 
functions given in section 2.  Attempting to substitute variable names when coding a function call is
confusing however, and so it is desirable to have separate versions. 
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Function Scalarvolt_X3V(ByVal Xref as double, Vxz as double, Vz as double, Vx as double) _
as double
'Calculates the reactive component of an impedance (X) using the 3-V scalar voltage method
IF Vx = 0 Then 
Scalarvolt_X3V = 0
else
Scalarvolt_X3V = Xref*( ( (Vxz^2 - Vz^2 )/ Vx^2 ) - 1) /2
end if
End function

Function SV_sigmaX3V(ByVal sigmaXref as double, Xref as double, sigmaV as double, _
OffsetV as double, Vxz as double, Vz as double, Vx as double) as double
'Calculates a standard deviation for X when the three voltage method is used.
'SigmaXref and sigmaV are input as percentages and converted into absolute uncertainties.
'OffsetV is the voltage measurement offset (or zeroing) error, in volts.
'The function returns an absolute uncertainty (in Ohms).
If Vx = 0 then
SV_sigmaX3V = 1E12
Else
sigmaXref = Abs(Xref)*sigmaXref/100
Dim sigmaVxz as double, sigmaVz as double, sigmaVx as double, Ux as double
sigmaVxz = Vxz*sigmaV/100 + OffsetV
sigmaVz = Vz*sigmaV/100 + OffsetV
sigmaVx = Vx*sigmaV/100 + OffsetV
Ux = ((Vxz^2 - Vz^2 )/ Vx^2 ) - 1
Dim derivXref as double, derivVxz as double, derivVz as double, derivVx as double
derivXref = Ux / 2
derivVxz = Vxz*Xref/Vx^2
derivVz = -Vz*Xref/Vx^2
derivVx = -Xref*((Vxz^2 - Vz^2)/Vx^3)
SV_sigmaX3V = Sqr( (sigmaXref*derivXref)^2 + (sigmaVxz*derivVxz)^2 _
+ (sigmaVz*derivVz)^2 + (sigmaVx*derivVx)^2 )
End if
End function
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4.   Reference reactance 
Given the ready availability of reasonably good digital multimeters, many people have the ability to
make acceptably accurate voltage and resistance measurements.  Precision resistors of low series 
inductance are also commercially available.  Equipment to make accurate reactance measurements 
at radio frequencies is however less common.   Also, the reference capacitor (if a capacitor is used) 
will have some series inductance, which will cause its effective capacitance to vary with frequency; 
and while this can be modelled accurately over many octaves, it complicates the measurement 
process.  Consequently, there is a general preference among users of the scalar voltage method; to 
eliminate the need to know the reference reactance by allowing it to be determined by the reference 
resistance.  It would be sensible however, to find-out whether this is a good idea in terms of error-
accumulation. 

Referring again to table 1, we can obtain the magnitude of the reference reactance using (5) / (4), 
i.e.;

Xref
2 / Rref

2  = |VX|2  / |VR|2

Taking the square root of both sides and rearranging gives:

Xref = ±Rref |VX| / |VR|

A square root has both positive and negative solutions, and so we cannot determine the sign of the 
reactance by this procedure.  Presuming that we are using the reference component below its self-
resonant frequency (SRF) however, we know the sign from the type of component.  Therefore we 
can define a function to restore the information.  For the purpose of allowing Xref  to vary in the 
process of mathematical modelling, we can write the function algebraically as:

Sign(Xref ) = Xref  / |Xref|

This function can only take on the values +1, -1 and 0/0 (undefined).  Actually, there is already 
built-in Sign function in Open Office Basic and other languages, and this will return 0 when the 
argument is 0.  This avoids invalid calls to macro functions when a divide-by-zero error occurs.

So, we now have our expression for for determination of the reference reactance:

Xref = Sign(Xref ) Rref |VX| / |VR| (4.1)

This combines three measurements, and if we presume them to be uncorrelated, the error function 
is:
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σXref = √{ ( σRref ∂Xref /∂Rref )2 + ( σVX ∂Xref /∂|VX| )2 + ( σVR  ∂Xref /∂|VR| )2 }

where:

∂Xref /∂Rref  = Sign(Xref ) |VX| / |VR|

∂Xref /∂|VX| = Sign(Xref ) Rref / |VR|

and

∂Xref /∂|VR| = -Sign(Xref ) Rref |VX| / |VR|2

(4.1u)

Notice that the Sign function is carried over into all of the derivatives.  The sign is irrelevant to the 
error function however, because all of the error contributions will be squared, but it would be 
mathematically incorrect not to include it.  It is shown in grey however, because we don't need to 
use it.   The derivatives tell us, incidentally, that the uncertainty in Xref  explodes when |VR | is small.

The determination of Xref  from the data is simulated in the spreadsheet file YZ_scalar_sim.ods 
(sheet 2).  Using a voltage SD of 0.5% and an SD of 0.1% for the value of Rref ,  it returns a constant
σXref  of 0.714%, regardless of the actual values of ∂Xref and ∂Xref .  This occurs because the voltage 
error is assumed to be a straight percentage, i.e., offset error is ignored, but it is nevertheless 
realistic if the driving voltage is reasonably large.
     The Basic macro error function on the next page allows an offset error to be included.  If this is 
set to 0.01 V (typical of a 10-bit ADC with a 10 V reference), then, for |Xref| in the region of 50 Ω, 
the error is still in the 1% to 1.5% region.
     The determination of Xref against the reference resistance is surprisingly good; actually better 
than can be obtained from a typical laboratory RF bridge without spot calibration.  The 
measurement however, does assume that there is no parasitic reactance in the reference resistance, 
and no parasitic resistance in the reference reactance.

Equation (4.1), of course, can be used as a substitution in other formulae in order to eliminate the 
need for explicit knowledge of Xref .
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Open Office Basic functions for Xref  and σXref  are given below.  The sign of the reactance is not 
used in the error function (a standard deviation is a magnitude), but the relative signs of the 
derivatives are preserved internally in case of possible future modification to deal with correlated 
errors.

Function Scalarvolt_Xref(ByVal signx as integer, Rref as double, _
Vx as double, VR as double) as double
'determines Xref using Rref.
If VR = 0 then
Scalarvolt_Xref = 0
else
Scalarvolt_Xref = signx*Rref*Vx/Vr 
end if
end function

Function SV_sigmaXref(ByVal sigmaRref as double, Rref as double, sigmaV as double, _
OffsetV as double, Vx as double, VR as double) as double
'calculates a standard deviation for Xref when determined against Rref.
'SigmaRref and sigmaV are input as percentages and converted into absolute uncertainties.
'OffsetV is the voltage measurement offset (or zeroing) error, in volts.
'The function returns an absolute uncertainty (in Ohms)
'sigmaXref is a magnitude, so the sign of Xref is not needed.
If VR = 0 then
SV_sigmaXref = 1E12
else
sigmaRref = Rref*sigmaRref/100
Dim sigmaVx as double, sigmaVR as double
sigmaVx = Vx*sigmaV/100 + OffsetV
sigmaVR = VR*sigmaV/100 + OffsetV
Dim derivRref as double, derivVx as double, derivVR as double
derivRref = Vx / VR 
derivVx = Rref / VR
derivVR = -Rref*Vx/VR^2
SV_sigmaXref = sqr( (sigmaRref*derivRref)^2 +(sigmaVx*derivVx)^2 +(sigmaVR*derivVR)^2 )
end if
end function
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5.   Reactance: 4-V method 
If we determine Xref  from the data using equation (4.1) and use that value to determine X by the 3-
V method (equation 3.1a), then we are actually using |VX| twice.  That will give rise to a correlation 
in the error function, and the standard deviation will not be calculated correctly.  What we need to 
do therefore is to combine (4.1) and (3.1) and derive a new error function.  Also, it means that there 
is no need to use Xref  explicitly in the calculation of X.  We still need to know Xref  however, 
because it has a considerable effect on the the accuracy of measurement of both R and X, and we 
need to be in control of it.

Substituting (4.1) into (3.1) gives:

X =
Sign(Xref ) Rref

2

┌
│
│
└

|VX|

|VR|

┐
│
│
┘

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VX|2 

┐
│
│
┘

And multiplying the brackets leaves us with:

X = 
Sign(Xref ) Rref

2

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VR| |VX|

┐
│
│
┘

Four voltage 
(4-V) method

(5.1)

A similar expression, but without the sign, can be obtained from the analogs given in tables 1 & 2 
using  [ (2) - (3) - (5) ] / [ √(4) × √(5) ].

The uncertainty analysis can proceed as before (although we will add 4V to the error function 
subscript to distinguish it from the 3-V method given earlier:

σX4V = √{ (σRref ∂X/∂Rref )2 + (σVXZ ∂X/∂|VXZ| )2 + (σVZ  ∂X/∂|VZ| )2 

           + (σVR  ∂X/∂|VR| )2  + (σVX  ∂X/∂|VX| )2 }

If we call the quantity in square brackets in equation (5.1) above UX4V , then three of the derivatives 
can be had by inspection: 

∂X/∂Rref  = Sign(Xref ) UX4V / 2 [ dimensionless ]

∂X/∂|VXZ| = Sign(Xref ) |VXZ| Rref / ( |VR| |VX| ) [ ohms / volt ]

∂X/∂|VZ| = -Sign(Xref ) |VZ| Rref / ( |VR| |VX| ) [ ohms / volt ]

The remaining two however require a little more care:

∂X/∂|VR| = 
Sign(Xref ) Rref

2

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VX|

┐
│
│
┘

┌
│
│
└

-1

|VR|2

┐
│
│
┘
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Hence:

∂X/∂|VR| = -Sign(Xref ) UX4V Rref  / ( 2 |VR| ) [ ohms / volt ]

Finally, to obtain ∂X/∂|VX| it is best to split equation (5.1) into two terms, which can be 
differentiated separately:

X = 
Sign(Xref ) Rref

2

┌
│
│
└

|VXZ|2 - |VZ|2

|VR| |VX|
-

|VX|

|VR|

┐
│
│
┘

Now, noting that both differentiations produce a negative result (prior to application of the Sign 
operator), we get:

∂X/∂|VX| = 
Sign(Xref ) Rref

2

┌
│
│
└

|VXZ|2 - |VZ|2

|VR| |VX|2
+

1

|VR|

┐
│
│
┘

[ ohms / volt ]

As in the previous section, the sign of the reference reactance makes no difference to the error 
function, but it is preserved in the derivation for reasons of mathematical rigour.

The collected formulae are:

X = Sign(Xref) UX4V Rref  / 2

where: 

UX4V = ( |VXZ|2 - |VZ|2 - |VX|2 ) / ( |VR| |VX|)

(5.1a)

4-V

σX4V = √{ (σRref ∂X/∂Rref )2 + (σVXZ ∂X/∂|VXZ| )2 + (σVZ  ∂X/∂|VZ| )2 

                 + (σVR  ∂X/∂|VR| )2  + (σVX  ∂X/∂|VX| )2 }

∂X/∂Rref  = Sign(Xref ) UX4V / 2

∂X/∂|VXZ| = Sign(Xref ) |VXZ| Rref / ( |VR| |VX| )

∂X/∂|VZ| = -Sign(Xref ) |VZ| Rref / ( |VR| |VX| )

∂X/∂|VR| = -Sign(Xref ) UX4V Rref  / ( 2 |VR| )

∂X/∂|VX| = -Sign(Xref ) Rref [ { ( |VXZ|2 - |VZ|2 ) / ( |VR| |VX|2 ) } + 1/ |VR| ] / 2

(5.1u)
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OO Basic functions for the calculation of  X and σX  by the four-voltage method are shown below.

Function Scalarvolt_X4V(ByVal signx as integer, Rref as double, _
Vxz as double, Vz as double, Vx as double, VR as double) as double
'Calculates the reactive component of an impedance (X) using the 4-V scalar voltage method
IF VR = 0 or Vx = 0 Then 
Scalarvolt_X4V = 0
else
Scalarvolt_X4V = signx*Rref*(Vxz^2 - Vz^2 - vx^2 )/( 2*VR*Vx )
end if
End function

Function SV_sigmaX4V(ByVal sigmaRref as double, Rref as double, sigmaV as double, _
offsetV as double, Vxz as double, Vz as double, Vx as double, VR as double) as double
'Calculates a standard deviation for X when the four voltage method is used.
'SigmaRref and sigmaV are input as percentages and converted into absolute uncertainties.
'offsetV is the voltage measurement offset (or zeroing) error, in volts.
'The function returns an absolute uncertainty (in Ohms).
'sigmaX is a magnitude, and so the sign of Xref is not needed.
If Vx = 0 or VR  = 0 then
SV_sigmaX4V = 1E12
Else
sigmaRref = Rref*sigmaRref/100
Dim sigmaVxz as double, sigmaVz as double, sigmaVx as double, sigmaVR as double
Dim Ux4v as double, derivRref as double
Dim derivVxz as double, derivVz as double, derivVx as double, derivVR as double
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
sigmaVx = Vx*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
Ux4v = ( Vxz^2 - Vz^2 - Vx^2 ) / ( VR*Vx )
derivRref = Ux4v / 2
derivVxz = Vxz*Rref/(Vx*VR)
derivVz = -Vz*Rref/(Vx*VR)
derivVR = -Ux4v*Rref/(2*VR)
derivVx = 0.5*Rref*( (( Vxz^2-Vz^2 )/( VR*Vx^ 2)) +1/VR )
SV_sigmaX4V = Sqr( (sigmaRref*derivRref)^2 + (sigmaVxz*derivVxz)^2 _
+ (sigmaVz*derivVz)^2 + (sigmaVR*derivVR)^2 + (sigmaVx*derivVx)^2 )
End if
End function
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An error simulation worksheet for the four-voltage method for reactance is given in the spreadsheet 
file  YZ_scalar_sim.ods (sheet 3).   Once again, the working is checked against a separately coded 
macro function.  The error function  for the 3-V method (calculated using the macro given in 
section 3) is also plotted on the graphs for comparison.  
     Recall that the 3-V method requires a reference reactance as input; and so for the purpose of the 
comparison, σXref  is set to the value that would be obtained from a determination of Xref  carried out 
as in section 4 (i.e., computed from Rref  and the voltages) and using the same measurement 
conditions as for X.  Since the uncertainty of Xref  is then correlated with the uncertainty 
contributions used in the error calculations for X, we expect there to be a difference in the reported 
standard deviation depending on whether the reference reactance is used explicitly (3-V method) or 
implicitly (4-V method).  What we are testing therefore is: given equal uncertainty between an 
independent determination of Xref  (obtained using a separate measuring device) or an implicit 
determination, which method will give the best result?   A difference is seen in the graphs below but
it is fairly small.  Generally, the 4-V method is slightly better than the 3-V method, except when the 
magnitude of the reference reactance is somewhat greater than that of the unknown reactance and of
opposite sign.  The 3-V calculation assumes however, that a determination of Xref ,  at least as good 
as can be obtained from the data, is available from another source.  A very accurate model for Xref  
might lead us to use the 3-V method, but the 4-V method is otherwise to be preferred on grounds of 
accuracy and convenience.

The simulations shown in the graph on
the right are carried out for an 'unknown'
impedance with a reactive component of
+50 Ω.  The error parameters are:
σRref = 0.1%
σV = 0.5%
and for the 3-V calculation:
σXref = 0.714%

The X-axis shows the effect of varying
the reference reactance.  Obviously, 
σX → ∞  when Xref → 0 .  Also there is a
conjugate reactance effect, in that the
error is less when the reference reactance
is of opposite sign to the unknown
reactance.  If the sign of the unknown
reactance is reversed, the shape of the
graph is reflected about Xref = 0.  Notice
however, that the minimum error does not occur when Xref = -X .  This is because the minimum is 
skewed by the infinity at Xref = 0.

The separate curves show that the measurement error is dependent on the resistive component of the
unknown impedance.  Best accuracy is obtained when R = 0, but the error incurred when measuring
impedances with a  larger resistive component can be ameliorated by making |Xref| > R

Note that, when using a straight percentage error for voltages, the calculations give the same result 
regardless of Rref  (provided that it is > 0), because there is no penalty associated with the 
measurement of very small voltages.  Consequently, adjusting Rref  makes no difference to the 
simulation (although we need to develop a few volts across it in practice).
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6.   Impedance magnitude 
Impedance magnitude is defined as:

|Z| = √( R2 + X2 )

This can be obtained from table 1 using (3) / (4) ,  i.e.;

|VZ|2 / |VR|2 =  ( R2 + X2 ) / Rref 
2

Which gives:

|Z| = Rref |VZ| / |VR| (6.1)

The uncorrelated error function is:

σZ = √{ ( σRref ∂|Z|/∂Rref )2 + ( σVZ ∂|Z|/∂|VZ| )2 + ( σVR  ∂|Z|/∂|VR| )2 }

where:

∂|Z|/∂Rref = |VZ| / |VR|

∂|Z|/∂|VZ| = Rref / |VR|

and

∂|Z|/∂|VR| = -Rref |VZ| / |VR|2

(6.1u)

A simulation of the calculation is given in the spreadsheet  YZ_scalar_sim.ods (sheet 1).  Since the 
error function is the same as that for the reference reactance determination, except for a change of 
variables, it should not be surprising that the accuracy obtained is the same, i.e. constant for a given 
simple percentage σV  and σRref .  Using 0.5% and 0.1% as before, we obtain σZ = 0.714%.  The 
scalar voltage method is evidently a fairly good choice for the determination of impedance 
magnitude.

Basic macros for |Z| and σZ are given on the next page.
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Function Scalarvolt_ModZ(ByVal Rref as double, Vz as double, VR as double) as double
'Calculates |Z| by comparing the impedance against a refrence resistance.
If VR = 0 then
Scalarvolt_ModZ = 0
else
Scalarvolt_ModZ = Rref*Vz/VR
end if
End Function

Function SV_sigmaZ(ByVal sigmaRref as double, Rref as double, sigmaV as double, _
offsetV as double, VZ as double, VR as double) as double
'Calculates a standard deviation for |Z|
'SigmaRref and sigmaV are input in % and converted into absolute uncertainties.
'offsetV is the voltage measurement offset (or zeroing) error, in volts.
'The function returns an absolute uncertainty (in Ohms).
If VR = 0 then
SV_sigmaZ = 1E12
Else
sigmaRref = Rref*sigmaRref/100
Dim sigmaVZ as double, sigmaVR as double
Dim derivRref as double, derivVZ as double, derivVR as double
sigmaVZ = VZ*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
derivRref = VZ / VR
derivVZ = Rref / VR
derivVR = -Rref*VZ/VR^2
SV_sigmaZ = Sqr( (sigmaRref*derivRref)^2 +(sigmaVz*derivVZ)^2 +(sigmaVR*derivVR)^2 )
End if
End Function
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7.   Phase tangent and Q 
The phase angle of an impedance R+jX is given by:

φ = Arctan(X/R)

This is the quantity that must be brought to zero during the reactance cancelling step of an 
impedance-matching operation.  However, for any impedance matching process, be it manual or 
automatic, it makes little difference whether we use the cyclometric (inverse trig.) function above, 
or whether we use the quantity:

Tanφ = X/R.

Note also that the Q of an impedance is defined as: 

Q = |X|/R

So if we determine Tanφ , we get the Q for free.  Also observe that if we calculate a standard 
deviation for Tanφ ,  we can call it σQ  without any loss of generality.

The most obvious way in which to determine Tanφ from the raw voltage-measurement data would 
be to take an expression for X and divide it by an expression for R.  It is also obvious that, since we 
have two expressions for X, there will be two ways of calculating X/R, one using Xref  explicitly, 
and one using it implicitly.  It is a little more informative however, to start with the analogs in 
table 2.  Using  (2) - (3) - (5) / [ (1) - (2) - (4)  ]  we get:

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VS|2 - |VXZ|2 - |VR|2

┐
│
│
┘

=
2 X Xref

2 R Rref

Hence:

X

R
=

Rref

Xref

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VS|2 - |VXZ|2 - |VR|2

┐
│
│
┘

Explicit reference method (7.1)

This requires knowledge of both Rref  and Xref , and we will therefore refer to it as the 'explicit 
reference method'.  As in the case of the 3-V formula for X, it also gives the sign of X/R provided 
that we know the sign of Xref .  

As was discussed in section 4, The reference reactance can be eliminated by using the substitution 
(4.1):

Xref = Sign(Xref ) Rref |VX| / |VR|

Where Sign(Xref ) is the sign of the reference reactance (+1 or -1) determined from knowledge of 
the type of component in use (-1 for a capacitor).

Hence:
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X

R
= Sign(Xref)

|VR|

|VX|

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VS|2 - |VXZ|2 - |VR|2

┐
│
│
┘

Implicit reference method (7.2)

Now the calculation does not require the value of either of the references components, and so we 
will refere to it as the 'implicit reference method'.  The choice of reference values however will still 
have an effect on the accuracy of the result.

In order to obtain error functions for either of the two methods, it will be necessary to differentiate 
the corresponding expression with respect to every one of its parameters.  Some reduction of 
duplicated effort will therefore be obtained by preserving the similarities between the the two 
methods.  First we will define the quantity that appears in square brackets in both expressions as:

UQ =

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

|VS|2 - |VXZ|2 - |VR|2

┐
│
│
┘

(7.3)

Then, the formula for Tanφ by the explicit reference method becomes:

X/R = UQ Rref / Xref    (7.1a)

and the formula for the implicit reference method becomes:

X/R = Sign(Xref) UQ  |VR| / |VX| (7.2a)

But note that a standard deviation is a magnitude.  Consequently, we don't need to include the sign 
when deriving the error function.  So, we can eliminate the sign operator from (7.2a) by starting 
with an expression for Q ,  but we will use the same approach in both cases to preserve the 
equivalence:

Q = |UQ Rref / Xref | Explicit reference

Q = |UQ| |VR| / |VX| Implicit reference

Although it is not obvious at this stage, UQ  can be either positive or negative.  Consequently, since 
Q is positive by convention, one of the expressions requires us to work with the magnitude of UQ ;  
and in the process of obtaining derivatives, there is a difference in the propagation of algebraic 
signs.  Both also force us to compute magnitudes unnecessarily during differentiation, since the sign
of Q has no effect on the error function.  We can however, circumvent that issue by defining a 
quantity q as follows:

q = UQ Rref / |Xref | Explicit reference (7.4)

q = UQ |VR| / |VX| Implicit reference (7.5)

The two functions now allow the sign of q to be dictated by UQ .  Q (which we do not need) is equal 
to the magnitude of q ;  but q itself can be either positive or negative.
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7a. Error function for explicit reference method 
As explained in the previous section, the error function for X/R is the same as the error function for 
Q, but it is convenient to derive it from a quantity q  (defined such that Q = |q| ) as given by 
equation (7.4):  

q = UQ Rref / |Xref|

UQ  is a function of all five measured voltages, as can be seen by examining equation (7.3).  Hence 
the error function for the explicit reference method (indicated by a small x in the subscript) can be 
written:

σQx = √{ (σRref ∂q/∂Rref )2 + (σXref ∂q/∂|Xref |)2  + (σVXZ ∂q/∂|VXZ| )2 + (σVZ ∂q/∂|VZ| )2 

+ (σVX ∂q/∂|VX| )2 + (σVS ∂q/∂|VS| )2 + (σVR ∂q/∂|VR| )2 }

The first two derivatives are straightforward:

∂q/∂Rref  = UQ / |Xref| [ Siemens ]

∂q/∂|Xref | = -UQ Rref / Xref
2 [ Siemens ]

The dimensions of these derivatives are Siemens ( i.e., [ Ω-1 ] ) because Q  (or q , or X/R) is a 
dimensionless ratio, and so the product of the derivative and the contributing uncertainty (in ohms) 
must be dimensionless.

|VXZ| appears in both the numerator and denominator of UQ , and so to obtain ∂Q/∂|VXZ| we can use 
the quotient rule:

d(u/w)/dx = [ w du/dx - u dw/dx ] / w2

so if u is the numerator of UQ  we have:

u = |VXZ|2 - |VZ|2 - |VX|2 [ volts2 ]

and if w is the denominator of UQ  we have:

w = |VS|2 - |VXZ|2 - |VR|2 [ volts2 ]

Thus: 

∂u/∂|VXZ| = 2 |VXZ|

∂w/∂|VXZ| = -2 |VXZ|

∂(u/w)/∂|VXZ| = ( 2 |VXZ| w  + 2 |VXZ| u ) / w2     = 2 |VXZ| ( w + u ) / w2

Hence:
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∂q/∂|VXZ| = 2 ( Rref / |Xref| ) |VXZ| ( w + u ) / w2 [ volts × volts2 / volts4 = volts-1 ]

w and u are going to appear again, so we might as well evaluate them during the calculation process
(i.e., there is no point in writing out the expression in full).

|VZ| and |VX| only appear in the numerator of UQ and so the next two derivatives are straightforward:

∂q/∂|VZ| = -2 ( Rref / |Xref| ) |VZ| / w [ volts / volts2 = volts-1 ]

∂q/∂|VX| = -2 ( Rref / |Xref| ) |VX| / w [ volts / volts2 = volts-1 ]

|VS| and |VR| only appear in the denominator of UQ and so we need to use the 'function of a function'
rule:

if   y = f(w)  and  w = f(v)   then   dy/dv = (dy/dw) (dw/dv)

so;   if y = 1/w   then   dy/dw = -1/w2  ;  and   if   w = a + bv2   then   dw/dv = 2bv

Hence:

If   y = 1/( a + bv2 )   then    dy/dv = -2bv/w2 

Thus, putting v = |VS|  and  b = +1 :

∂q/∂|VS| = -2 ( Rref / |Xref| ) |VS| u / w2 [ volts × volts2 / volts4 = volts-1 ]

and, putting v = |VR|  and  b = -1 :

∂q/∂|VR| = 2 ( Rref / |Xref| ) |VR| u / w2 [ volts × volts2 / volts4 = volts-1 ]
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The collected formulae are:

Tanφ = X / R = UQ Rref / Xref

where

UQ = u / w

u = |VXZ|2 - |VZ|2 - |VX|2 

w = |VS|2 - |VXZ|2 - |VR|2 

(7.6)

Tanφ
explicit

reference
method

q = UQ Rref / |Xref |

σQx = √{ (σRref ∂q/∂Rref )2 + (σXref ∂q/∂Xref )2  + (σVXZ ∂q/∂|VXZ| )2 + (σVZ ∂q/∂|VZ| )2 

                                              + (σVX ∂q/∂|VX| )2 + (σVS ∂q/∂|VS| )2 + (σVR ∂q/∂|VR| )2 }

where

∂q/∂Rref  = UQ / |Xref|

∂q/∂Xref  = -UQ Rref / Xref
2 

∂q/∂|VXZ| = 2 ( Rref / |Xref| ) |VXZ| ( w + u ) / w2

∂q/∂|VZ| = -2 ( Rref / |Xref| ) |VZ| / w

∂q/∂|VX| = -2 ( Rref / |Xref| ) |VX| / w

∂q/∂|VS| = -2 ( Rref / |Xref| ) |VS| u / w2

∂q/∂|VR| = 2 ( Rref / |Xref| ) |VR| u / w2

(7.6u)

Basic macros for these calculations are shown on the next page.  A simulation worksheet is given in 
the spreadsheet file YZ_scalar_sim.ods (sheet 4).  In the worksheet, the method is verified against 
the Basic macro, and compared with the implicit reference method (to be discussed next).
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Function SVx_Tanphi(ByVal Rref as double, Xref as double, _
Vxz as double, Vz as double, Vx as double, Vs as double, VR as double) as double
'Calculates Tan(phi) = X/R  by the explicit reference method.
Dim w as double, UQ as double
w = Vs^2 - Vxz^2 - VR^2 
IF Xref = 0 or w = 0 Then 
SVx_Tanphi = 0
else
UQ = (Vxz^2 - Vz^2 - Vx^2) / w
SVx_Tanphi = UQ * Rref / Xref
end if
end function

Function SV_sigmaQx(ByVal Rref as double, sigmaRref as double, _
Xref as double, sigmaXref as double, sigmaV as double, offsetV as double, _
Vxz as double, Vz as double, Vx as double, Vs as double, VR as double) as double
'Calculates sigmaQ using the explicit reference method.
Dim u as double, w as double, UQ as double
w = Vs^2 - Vxz^2 - VR^2 
IF Xref = 0 or w = 0 Then 
SV_sigmaQx = 1E12
else
Dim sigmaVxz as double, sigmaVz as double, sigmaVx as double
Dim sigmaVs as double, sigmaVR as double
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
sigmaVx = Vx*sigmaV/100 + offsetV
sigmaVs = Vs*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
Dim derRref as double, derXref as double, derVxz as double, derVz as double
Dim derVx as double, derVs as double, derVR as double, RbyX as double
u = Vxz^2 - Vz^2 - Vx^2
UQ = u / w
Xref = abs(Xref)
derRref = UQ/Xref
derXref = -UQ*Rref/Xref^2
RbyX = Rref / Xref
derVxz = 2*RbyX*Vxz*(w+u)/w^2
derVz = -2*RbyX*Vz/w
derVx = -2*RbyX*Vx/w
derVs = -2*RbyX*Vs*u/w^2
derVR = 2*RbyX*VR*u/w^2
SV_sigmaQx = sqr( (sigmaRref*derRref)^2 +(sigmaXref*derXref)^2 +(sigmaVxz*derVxz)^2 _
+(sigmaVz*derVz)^2 +(sigmaVx*derVx)^2 +(sigmaVs*derVs)^2 +(sigmaVR*derVR)^2 )
end if
end function
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7b. Error function for implicit reference method 
In deriving the error function for the implicit reference method, we will preserve the definitions of 
UQ,  u and w from the previous section.  Thus, from equation (7.5) we have:

q =  UQ |VR| / |VX|  = ( |VR| / |VX| ) ( u / w)

and the error function (with i, for implicit, added to the subscript) becomes:

σQi = √{ (σVXZ ∂q/∂|VXZ| )2 + (σVZ ∂q/∂|VZ| )2 + (σVX ∂q/∂|VX| )2 

+ (σVS ∂q/∂|VS| )2 + (σVR ∂q/∂|VR| )2 }

The derivatives must also be redefined, although in the three instances where |VR| and |VX| are held 
constant, the difference is only a matter of substituting  |VR| / |VX|  in place of   |Rref / Xref | .  Thus:

∂q/∂|VXZ| = 2 ( |VR| / |VX| ) |VXZ| ( w + u ) / w2

∂q/∂|VZ| = -2 ( |VR| / |VX| ) |VZ| / w

∂q/∂|VS| = -2 ( |VR| / |VX| ) |VS| u / w2

The remaining two however are rather more difficult.

To find  ∂q/∂|VR| ,  we can start by regrouping the expression for q as:

q = ( u / |VX| ) ( |VR| / w)

The first bracket contains the quantities held constant for this differentiation, and the second 
containins the functions of the variable.  Thus the expression is now in the form:

q = k z(v)/w(v)  ;  so that  dq/dv = k ( w dz/dv - z dw/dv ) / w2  

where  z = v  giving  dz/dv = 1    and    w = a - v2  giving  dw/dv = -2v

and so:  

dq/dv = k ( w + 2 v2 ) / w2  

Hence:

∂q/∂|VR| = ( u / |VX| ) [ (1/w) + 2 |VR|2 / w2 ] [ volts × volts-2 = volts-1 ]

To find  ∂q/∂|VX| ,  we can regroup the expression for q as:

q = ( |VR| / w) ( u / |VX| )

Where the variables are in the second bracket.  The expression is now in the form:
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q = k u(v)/y(v)  ;  so that  dq/dv = k (y du/dv - u dy/dv ) / y2     

where  y = v  giving  dy/dv = 1   and   u = a - v2  giving  du/dv = -2v

therefore:

dq/dv = k ( -2v2 - u ) / v2  = k (-2  -u / v2 ) 

Hence:

∂q/∂|VX| = -( |VR| / w) ( 2 + u / |VX|2 ) [ volts-1 ]

We can also check this differentiation by performing it in a different way.  Expanding u we get:

q = ( |VR| / w) [ |VXZ|2 - |VZ|2 - |VX|2 ] / |VX|

and dividing through gives:

q = ( |VR| / w) { [ ( |VXZ|2 - |VZ|2 ) / |VX| ] - |VX| }

This can be differentiated directly:

∂q/∂|VX| = ( |VR| / w) { [ -( |VXZ|2 - |VZ|2 ) / |VX|2  ] - 1 }

Taking out the minus sign and putting both terms on a common denominator gives:

∂q/∂|VX| = -( |VR| / w) [ ( |VXZ|2 - |VZ|2  + |VX|2 ) / |VX|2  ]

Then using the substitution: 

|VX|2 = 2|VX|2 - |VX|2 

we get:

∂q/∂|VX| = -( |VR| / w) [ ( |VXZ|2 - |VZ|2 - |VX|2 + 2|VX|2 ) / |VX|2  ]

               = -( |VR| / w) [ ( u / |VX|2 ) + 2 )

which is the same as above.
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The collected formulae are:

Tanφ = X / R = Sign(Xref) UQ ( |VR| / |VX| )

where

UQ = u / w

u = |VXZ|2 - |VZ|2 - |VX|2 

w = |VS|2 - |VXZ|2 - |VR|2 

(7.7)

Tanφ
implicit

reference
method

q =  UQ |VR| / |VX| 

σQi = √{ (σVXZ ∂q/∂|VXZ| )2 + (σVZ ∂q/∂|VZ| )2 + (σVX ∂q/∂|VX| )2 

                                                                           + (σVS ∂q/∂|VS| )2 + (σVR ∂q/∂|VR| )2 }

where

∂q/∂|VXZ| = 2 ( |VR| / |VX| ) |VXZ| ( w + u ) / w2

∂q/∂|VZ| = -2 ( |VR| / |VX| ) |VZ| / w

∂q/∂|VX| = -( |VR| / w) ( 2 + u / |VX|2 )

∂q/∂|VS| = -2 ( |VR| / |VX| ) |VS| u / w2

∂q/∂|VR| = ( u / |VX| ) [ (1/w) + 2 |VR|2 / w2 ]

(7.7u)

Basic macros are shown on the next page.
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Function SVi_Tanphi(ByVal signx as integer, Vxz as double, Vz as double, Vx as double, _
Vs as double, VR as double) as double
'Calculates Tan(phi) = X/R  by the implicit reference method.
Dim w as double, UQ as double
w = Vs^2 - Vxz^2 - VR^2 
if Vx = 0 or w = 0 then 
 SVi_Tanphi = 0
else
 UQ = (Vxz^2 - Vz^2 - Vx^2)/w
 SVi_Tanphi = signx*uQ*VR/Vx
end if
end function

Function SV_sigmaQi(ByVal sigmaV as double, offsetV as double, _
Vxz as double, Vz as double, Vx as double, Vs as double, VR as double) as double
'Calculates sigmaQ using the implicit reference method.
Dim u as double, w as double
w = Vs^2 - Vxz^2 - VR^2 
if Vx = 0 or w = 0 Then 
SV_sigmaQi = 1E12
else
u = Vxz^2 - Vz^2 - Vx^2
Dim sigmaVxz as double, sigmaVz as double, sigmaVx as double
Dim sigmaVs as double, sigmaVR as double
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
sigmaVx = Vx*sigmaV/100 + offsetV
sigmaVs = Vs*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
Dim VRbyVx as double, derVxz as double, derVz as double
Dim derVx as double, derVs as double, derVR as double
VRbyVx = VR / Vx
derVxz = 2*VRbyVx*Vxz*(w+u)/w^2
derVz = -2*VRbyVx*Vz/w
derVx = -(VR/w)*(2+u/Vx^2)
derVs = -2*VRbyVx*Vs*u/w^2
derVR = (u/Vx)*((1/w) +2*VR^2/w^2)
SV_sigmaQi = sqr( (sigmaVxz*derVxz)^2 +(sigmaVz*derVz)^2 +(sigmaVx*derVx)^2 _
+(sigmaVs*derVs)^2 +(sigmaVR*derVR)^2 )
end if
end function
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7c. Phase tangent error simulations 
A simulation worksheet for X/R is given in the spreadsheet file YZ_scalar_sim.ods (sheet 4).  Once
again, if the uncertainty in the value of Xref  used in the explicit reference error simulation is set to 
the value that can be obtained from the voltage measurements (as outlined in section 4), then there 
is a small numerical difference between the error curves for the explicit and implicit reference 
methods.  It is however, not large enough to warrant the extra complication of using the explicit 
method unless an exceptionally good reference reactance model is available; and it is not large 
enough to be resolved in the graph shown below.  

As is generally true, a simulation is most useful when it is performed with some particular 
application in mind.  This is definitely the case here, where a little experimentation with the 
numbers will show that the measurement error is fairly large when the reactive content of the 
impedance under test is large.  As the reactance approaches zero however, the error diminishes.   
Thus the method does not appear to show promise for general purpose Q measurement, but it does 
meet the requirements of a good zero-indicating phaseometer.

The graph shown right is for an
impedance  Z = 50 +jX Ω , with X/R
plotted against X as the latter is varied
between -400 Ω and +400 Ω.  X/R
therefore varies between -8 and +8, and is
shown with error limits, i.e., (X/R)+σ and
(X/R)-σ, which are calculated from the
error function for different values of Rref .
It will be seen that the error can be severe
when Rref  is much smaller than the
magnitude of the reactance, but as a zero
indicator, the system is good over a wide
range when Rref  is reasonably large.
There is also a conjugate reactance effect,
in that the minimum error is displaced
away from zero to the region where Xref

has the opposite sign to X.  The error at
zero for this simulation, incidentally, is
±0.012 (SD).  The choice of Xref  does not
have a strong effect, but results are most
accurate when it is similar in magnitude to R.

Note that for a quantity that passes through zero, such as X/R, it is more useful to give an error 
simulation as a set of limits than as a percentage error.  This is because, when X/R = 0, the error is 
infinite, even though it is small in absolute terms.  
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7d. Incremental error function 
It is always a good idea to check a calculation procedure by performing it in two different ways to 
see if the results agree.  This is particularly the case with error functions, because we don't usually 
estimate measurement uncertainty directly (by statistical sampling for example) and so the only 
physical test of the outcome is plausibility.  Here we have generally checked a spreadsheet analysis 
against a Basic program.  The risk with that approach however lies in the fact that both methods 
rely on the same mathematical derivation.  Hence, if there is a mistake in the derivation that does 
not result in obviously-implausible output, there is a chance that it will go undetected.  
     In the case of error functions; the risk that subtle mistakes will occur is small for simple 
derivations, but it increases dramatically when repeated application of compound differentiation 
methods is required.  Such is the case with the error functions for Q given previously.
     There is however, a way in which a fair estimate of uncertainty can be made without using 
calculus.  This is the incremental method, which involves calculating the quantity to be determined 
with each input measurement in turn incremented and then decremented by a small amount. 

Say we determine a quantity q  from a set of measurements (v1 , v2 , v3 ,   . . . . ).  To do that we must
apply a formula:

q = f(v1 , v2 , v3 ,   . . . . )

Now let us increment and decrement v1 by an amount Δv1 and see what effect that has on q in each 
instance.

f(v1+Δv1 , v2 , v3 ,   . . . . ) = q + Δqv1+ 

f(v1-Δv1 , v2 , v3 ,   . . . . ) = q - Δqv1- 

The reason why we perform both the positive and negative increment operations is that the 
magnitude of Δq will only be the same in both instances if the gradient of  q vs. v1  is a straight line 
in the region of that particular point in the parameter space (or if the increment is infinitessimally 
small).  Generally the gradient will be a curve, but we can get a fairly good idea of its value at the 
exact point of the measurement if we take the average of the two changes.  Hence:

Δqv1 = [ (q + Δqv1+  ) -  (q - Δqv1-  ) ] / 2 

        = [ Δqv1+ + Δqv1-  ] / 2

So the quantity Δqv1 is obtained by subtracting the upper and lower calculation results and dividing 
by 2.  From this we can get a numerical estimate of the derivative (and it will also have the same 
sign as the derivative if the decremented result is subtracted from the incremented result, as above). 
Thus:

∂q/∂ v1 ≈ Δqv1 / Δv1 

and using the standard deviation of v1 , we can get an estimate of the error contribution:

δqv1 = σv1 ∂q/∂ v1 ≈ σv1 Δqv1 / Δv1  

A simplification occurs however if, instead of using an arbitrary increment, we make the increment 
equal to the measurement standard deviation (i.e.,  Δv1 = σv1 ).  Then:
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δqv1 = σv1 ∂q/∂ v1 ≈ Δqv1 

By repeating the increment and decrement operation (by an amount equal to the standard deviation 
of the input value) for each input value in turn, we obtain estimates for all of the error contributions.
The error contributions can then be combined into an error function:

σq ≈ √{ Δqv1
2 + Δqv2

2 + Δqv3
2 + . . . . . . . }

This method can give very accurate results in regions where the gradient of q with respect to each of
its input values is changing relatively slowly, and provided that the standard devations are 
reasonably small.  In that case, it will agree closely with the analytical error function, and being 
numerical in origin (and relatively simple to obtain) it will give an independent check on the 
analytical error function.

7e. Numerical error function for implicit reference X/R 
The error functions for the explicit and implicit reference methods for phase tangent give a check on
each other, because they produce very similar (although not exactly identical) results when the 
uncertainty of the reference reactance used in the explicit reference calculation is set to that which 
applies when that reactance is obtained from the measured voltages (section 4).  The way in which 
they were derived in the preceding sections however means that they are somewhat interdependent 
in terms of provenance, for which reason an additional check is of value.  There is little to be gained
by checking both methods, and so an approximate numerical calculation procedure for the implicit 
reference case is given on the next page.

A graph comparing the analytical and
numerical error calculations is shown on
the right.  When the error is moderate (the
curve for Rref = 200 Ω), the two methods
give almost identical results, but when the
error is severe ( Rref = 40 Ω), the numerical
method is pessimistic.  Note however, that
we would not usually be interested in
techniques that give errors comparable to
the magnitude of the measurement (the
dotted line shows Q = |X|/R ), and so the
region in which the numerical method
breaks down is probably of little practical
interest.

The Basic calculation routine listed below makes use of the existing function ' SVi_Tanphi() '.  This 
was given in the preceding section, but it is repeated here below the calling program to facilitate 
cross referencing.  This function can be used to calculate the quantity q  by calling it with the Sign 
argument set to 1.  Determining the incremental error function is thus turned into the trivial matter 
of calling the function with each of the parameters in turn incremented and decremented by its 
absolute standard deviation.  The only additional housekeeping required is a set of checks to ensure 
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that no divide-by-zero errors will occur.  The reason for the checks is that, although the Tanφ 
function carries out its own tests, it returns zero for a  divide-by-zero error, whereas an error 
function should return a vary large number.
     Note that the use of repeated function calls in this manner is not efficient, but it makes the 
algorithm easy to code.  Also note that when calling a function from a program in OO Basic, the 
arguments are separated by commas, but when calling from a spreadsheet, the arguments are 
separated by semicolons.

Function SVn_sigmaQi(ByVal sigmaV as double, offsetV as double, _
Vxz as double, Vz as double, Vx as double, Vs as double, VR as double) as double
'Calculates sigmaQ numerically according to the implicit reference method.
'Calls the function SVi_Tanphi
Dim DVxz as double, DVz as double, DVx as double, DVs as double, DVR as double
'Absolute SDs arre used for the parameter displacements
DVxz = Vxz*sigmaV/100 + offsetV
DVz = Vz*sigmaV/100 + offsetV
DVx = Vx*sigmaV/100 + offsetV
DVs = Vs*sigmaV/100 + offsetV
DVR = VR*sigmaV/100 + offsetV
'Set the function value to 10^12 then check that no /0 errors will occur.
SVn_sigmaQi = 1E12
If  Vs^2 - (Vxz+DVxz)^2 - VR^2 = 0 then exit function
If  Vs^2 - (Vxz-DVxz)^2 - VR^2 = 0 then exit function
if (Vs+DVx)^2 - Vxz^2 - VR^2 = 0 then exit function
if (Vs-DVx)^2 - Vxz^2 - VR^2 = 0 then exit function
if Vs^2 - Vxz^2 - (VR+DVR)^2 = 0 then exit function
if Vs^2 - Vxz^2 - (VR-DVR)^2 = 0 then exit function
if Vx+DVx  = 0 then exit function
if Vx-DVx  = 0 then exit function
'Calculate the error contributions using the function SVi_Tanphi( )
Dim DqVxz as double, DqVz as double, DqVx as double, DqVs as double, DqVR as double
DqVxz = (SVi_Tanphi(1, Vxz+DVxz, Vz, Vx, Vs, VR)-SVi_Tanphi(1, Vxz-DVxz, Vz, Vx, Vs, VR))/2
DqVz = (SVi_Tanphi(1, Vxz, Vz+DVz, Vx, Vs, VR)-SVi_Tanphi(1, Vxz, Vz-DVz, Vx, Vs, VR))/2
DqVx = (SVi_Tanphi(1, Vxz, Vz, Vx+DVx, Vs, VR)-SVi_Tanphi(1, Vxz, Vz, Vx-DVx, Vs, VR))/2
DqVs = (SVi_Tanphi(1, Vxz, Vz, Vx, Vs+DVs, VR)-SVi_Tanphi(1, Vxz, Vz, Vx, Vs-DVs, VR))/2
DqVR = (SVi_Tanphi(1, Vxz, Vz, Vx, Vs, VR+DVR)-SVi_Tanphi(1, Vxz, Vz, Vx, Vs, VR-DVR))/2
SVn_sigmaQi = sqr( DqVxz^2 +DqVz^2 +DqVx^2 +DqVs^2 +DqVR^2 )
end function

Function SVi_Tanphi(ByVal signx as integer, Vxz as double, Vz as double, Vx as double, _
Vs as double, VR as double) as double
'Calculates Tan(phi) = X/R  by the implicit reference method.
Dim w as double, Uq as double
w = Vs^2 - Vxz^2 - VR^2 
if Vx = 0 or w = 0 then 
 SVi_Tanphi = 0
else
 Uq = (Vxz^2 - Vz^2 - Vx^2)/w
 SVi_Tanphi = signx*Uq*VR/Vx
end if
end function
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8.   Conductance 
Admittance Y is defined as the reciprocal of impedance, i.e.;

Y = 1 / Z = 1 / (R + jX)

Multiplying numerator and denominator by the complex conjugate of the denominator puts this 
expression into a+jb form thus:

Y = (R - jX) / ( R2 + X2 )

Which can be written11:

Y = G + jB

Where the real part G is the conductance, and the component B of the imaginary part is the 
susceptance.  Hence:

G = R / ( R2 + X2 )

and

B = -X / ( R2 + X2 )

As is explained in the author's articles on impedance matching12, when a pure reactance is placed in 
parallel with an impedance, the conductance of the combination is the same as for the original 
impedance.  Thus, if the conductance is first adjusted so that it it is equal to the reciprocal of the 
target load resistance, an impedance matching operation can be completed by the addition or 
subtraction of a parallel reactance (i.e., by adjusting the parallel element of an L-network).

By examining the analogs given in tables 1 & 2, it can be seen that the linear combination required 
for conductance determination is [ (1) - (2) - (4) ] / (3) ,  i.e.;

┌
│
│
└

|VS|2 - |VXZ|2 - |VR|2

 |VZ|2 

┐
│
│
┘

=
2 R Rref

( R2 + X2 )
= 2 G Rref

Thus, after rearrangement:

G =
1

2 Rref

┌
│
│
└

|VS|2 - |VXZ|2 - |VR|2

 |VZ|2 

┐
│
│
┘

[ Siemens ] (8.1)

The unit ' Siemens ' (which has capital S as its symbol ) is the SI name for Ω-1 (formerly ' Mho ').

11 Some publications give:  Y = G -jB.  This can be shown to be wrong by deriving the relationship 
Q = (resonant frequency / bandwidth)  for a parallel resonator.  Using the wrong admittance definition gives Q as 
negative.

12 www.g3ynh.info/zdocs/z_matching/
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The error function and derivatives for conductance determination can be obtained by inspection and
are given in the table below.

G = UG / (2 Rref  ) 

where

UG = w / |VZ|2 

w = |VS|2 - |VXZ|2 - |VR|2 

(8.1a)

σG = √{ (σRref ∂G/∂Rref )2 + (σVS ∂G/∂|VS| )2 + (σVXZ  ∂G/∂|VXZ| )2 + (σVR  ∂G/∂|VR| )2  

                                                                                             + (σVZ  ∂G/∂|VZ| )2 }

where

∂G/∂Rref = -UG / ( 2 Rref
2 )

∂G/∂|VS| = |VS| / ( |VZ|2 Rref )

∂G/∂|VXZ| = -|VXZ| / ( |VZ|2 Rref )

∂G/∂|VR| = -|VR| / ( |VZ|2 Rref )

∂G/∂|VZ| = -w / ( |VZ|3 Rref )

(8.1u)

Conductance measurement by the scalar voltage method does not require a reference reactance (i.e.,
Xref  can be set to zero), although the choice of Xref  does affect the accuracy of the result.  The 
possibility of eliminating Xref  , of course, also applies to the previously discussed resistance and 
impedance magnitude measurements (sections 2 and 6), but the difference in this case is that one of 
the measured voltages becomes redundant.  Specifically:

If Xref  = 0    then    VXZ = VZ 

Thus a stand-alone conductance meter can be made by placing only a reference resistance in series 
with the device under test.  If that is done however, then a question of statistical validity arises, and 
the error analysis given above might need to be altered.
     The issue is that if a program routine that performs the error analysis is passed exactly the same 
value for both |VXZ| and |VZ|, and the reason for that is not simply coincidence but because only one 
measurement exists, then the two values are correlated.  In that case, the calculated uncertainty will 
be incorrect.  We therefore need a separate error analysis for that case, but since only the derivatives
involving |VXZ| and |VZ| will be affected, the contingency is not difficult to include.

If |VXZ| is not used, then:

∂G/∂|VXZ| = 0
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The corresponding error contribution to σG in the final summation is thus wiped out.  The error 
contribution due to uncertainty in |VZ| however is increased, as we will see when we determine the 
partial derivative.  We can start by writing equation (8.1) with  |VZ| substituted in place of |VXZ|.

G =
1

2 Rref

┌
│
│
└

|VS|2 - |VZ|2 - |VR|2

 |VZ|2 

┐
│
│
┘

This can be rearranged:

G =
1

2 Rref

┌
│
│
└

|VS|2 - |VR|2

 |VZ|2 
- 1

┐
│
│
┘

and so the derivative with only |VZ| allowed to vary is:

∂G/∂|VZ| = -( |VS|2 - |VR|2 ) / ( |VZ|3 Rref )

Comparing this with the derivative given in the formula (8.1u), we can see that the effect of making
|VXZ| redundant has been to change the magnitude of the numerator of this derivative

from     |VS|2 - |VXZ|2 - |VR|2     to      |VS|2 - |VR|2 

The new numerator is of greater magnitude than the old one.  The increase is also sufficient to 
overcome the advantage gained by losing the error contribution from σVXZ.  The reason for that is 
that the redundant measurement is corroborative; i.e., in the presence of random experimental noise,
combining two measurements of the same quantity reduces the uncertainty of that quantity.  

Basic macro routines for G are given on the next page.  Note that at the end of the argument list for 
the error function there is a flag called ' nox ' (no reactance).  If nox is zero, then it is assumed that 
all four voltage measurements are made using separate detectors; in which case, if  |VXZ| = |VZ| ,  it 
is simply a coincidence resulting from the use of a very small reference reactance (the inductance of
a shorting link perhaps).  If  nox = 1  and  |VXZ| = |VZ|  however, then it is assumed that they are 
both the same measurement, and the derivative calculation is altered accordingly.  
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Function Scalarvolt_G(ByVal Rref as double, Vs as double, Vxz as double, _
VR as double, Vz as double) as double
'Calculates the conductance G of an admittance using the scalar voltage method.
'Return value is in milli Siemens (mS)
Scalarvolt_G  = 1E12
if Vz = 0 then exit function
Scalarvolt_G = 1000*( (Vs^2 - Vxz^2 -VR^2)/ Vz^2)/(2*Rref)
end function

Function SV_sigmaG(ByVal Rref as double, sigmaRref as double, _
sigmaV as double, offsetV as double, _
Vs as double, Vxz as double, VR as double, Vz as double, nox as integer) as double
'Calculates standard deviation of G in milli Siemens (mS).
'Uncertainties are input in % and converted to absolute.
'offsetV is the voltage measurement offset (or zeroing) error, in volts.
'If nox = 1, and Vxz = Vz, assumes that Xref=0 and Vz has been input twice.
SV_sigmaG = 1E12
If Vz = 0 then exit function
Dim derRref as double, w as double
Dim sigmaVs as double, sigmaVxz as double, sigmaVR as double, sigmaVz as double
Dim derVs as double, derVxz as double, derVR as double, derVz as double
'calculate absolute uncertainties: 
sigmaRref = Rref*sigmaRref/100
sigmaVs = Vs*sigmaV/100 + offsetV
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
'Calculate derivatives
w = Vs^2 - Vxz^2 - VR^2
derRref = -0.5 * w /(Vz * Rref)^2
derVs = Vs / (Vz^2 * Rref)
derVR = -VR / (Vz^2 * Rref)
if Vxz = Vz and nox = 1 then
  derVxz = 0
  derVz = -(Vs^2 - VR^2) / (Vz^3 * Rref )
else
  derVxz = -Vxz / (Vz^2 * Rref)
  derVz = -w / (Vz^3 * Rref )
endif
SV_sigmaG = 1000*sqr( (sigmaRref*derRref)^2 + (sigmaVs*derVs)^2 _
+(sigmaVxz*derVxz)^2 +(sigmaVR*derVR)^2 +(sigmaVz*derVz)^2 )
end function
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8a. Conductance error simulation 
A simulation worksheet for G is given in the spreadsheet file YZ_scalar_sim.ods (sheet 5).  The 
simulations shown in the graphs below have been carried out with a view to appraising the utility of
the method in impedance-matching applications.  As before, the reference resistance is taken to 
have a SD of 0.1%, and the voltage SD is 0.5%

This graph shows a family of curves for 
σG  vs. load reactance (X) for differenct 
choices of Rref .  With Xref set to -50 Ω, 
and R at 50  Ω, it is evident that there is a 
conjugate reactance effect from the 
positions of the error minima.  The 
minimum achievable error occurs when 
Rref  = R ,  but the minimum is somewhat 
narrow, and so best accuracy over a range 
of load reactances occurs when Rref   is 
considerably larger than R.

This graph shows a family of curves for
different reference reactances, with Rref 

set to 100  Ω.  The conjugate reactance
effect is evident from the way in which
the error minimum always occurs when
Xref = -X.  If the sign of the reference
reactance is changed, the graph is flipped
about X = 0.  For a zero-indicating
measuring device to be used for
impedance matching, the best choice of
reference reactance is obviously zero, but
if the scalar voltage measurements are to
be used simultaneously for the
determination of  X/R (phase tangent), the
accuracy is still acceptable when |Xref | is
around 50  Ω.
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9.   Susceptance 
Susceptance is the component of the imaginary part of admittance.  As discussed in the preceding 
section, it is defined as: 

B = -X / ( R2 + X2 )

By examining tables 1 & 2, it can be see to be obtainable from the combination 
[ (2) - (3) - (5) ] / (3) ,  i.e.;

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

 |VZ|2 

┐
│
│
┘

=
2 X Xref

( R2 + X2 )
= -2 B Xref

Thus:

B =
-1

2 Xref

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

 |VZ|2 

┐
│
│
┘

[ Siemens ] (9.1)

which can also be simplified if so preferred:

B =
-1

2 Xref

┌
│
│
└

|VXZ|2 - |VX|2

 |VZ|2 
- 1

┐
│
│
┘

3-V method (9.1a)

The derivatives and error function can be obtained by inspection, and so the whole formula can be 
written out directly;

B = -UB / ( 2 Xref )

where

UB = [ |VXZ|2 - |VZ|2 - |VX|2 ] / |VZ|2  

(9.1b)
3-V

method

σB3V = √{ (σXref ∂B/∂Xref )2 + (σVXZ ∂B/∂|VXZ| )2 + (σVZ ∂B/∂|VZ| )2 + (σVX ∂B/∂|VX| )2  }

where

∂B/∂Xref = UB / ( 2 Xref
2 )

∂B/∂|VXZ| = -|VXZ| / ( |VZ|2 Xref  )

∂B/∂|VZ| = ( |VXZ|2 - |VX|2 ) / ( |VZ|3 Xref  )

∂B/∂|VX| = |VX| / ( |VZ|2 Xref  )

(9.1u)
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Basic macros that perform the B 3-V calculations are given below.

Function Scalarvolt_B3V(ByVal Xref as double, Vxz as double, Vz as double, _
Vx as double) as double
'Calculates the susceptance B of an admittance using the 3-V method.
'Return value is in milli Siemens (mS)
Scalarvolt_B3V  = 1E12
if Vz = 0 then exit function
if Xref = 0 then exit function
Scalarvolt_B3V = -1000*(Vxz^2 - Vz^2 -Vx^2)/(2*Vz^2*Xref)
end function

Function SV_sigmaB3V(ByVal Xref as double, sigmaXref as double, sigmaV as double, _
offsetV as double, Vxz as double, Vz as double, Vx as double) as double
'Calculates sigmaB using the 3-V method.
'standard deviations are input as percentages and converted into absolute SD
'offsetV is the voltage measurement offset (or zeroing) error, in volts.
'Return value is in milli Siemens (mS)
SV_sigmaB3V = 1E12
if Xref = 0 then exit function
if Vz = 0 then exit function
SigmaXref = Xref*sigmaXref/100
Dim sigmaVxz as double, sigmaVz as double, sigmaVx as double
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
sigmaVx = Vx*sigmaV/100 + offsetV
Dim derXref as double, derVxz as double, derVz as double, derVx as double
derXref = (Vxz^2-Vz^2-Vx^2)/(2*Vz^2*Xref^2)
derVxz = -Vxz/(Vz^2*Xref)
derVz = (Vxz^2-Vx^2)/(Vz^3*Xref)
derVx = Vx/(Vz^2*Xref)
SV_sigmaB3V = 1000*sqr( (sigmaXref*derXref)^2 +(sigmaVxz*derVxz)^2 _
+(sigmaVz*derVz)^2 +(sigmaVx*derVx)^2 )
end function



44

The 3-V susceptance calculation, of course, requires explicit knowledge of the reference reactance.  
As has been established in previous sections, it is generally easier to obtain the reference reactance 
implicitly from the reference resistance, and so we can use the substitution given earlier as equation 
(4.1) in section 4.

Xref = Sign(Xref ) Rref |VX| / |VR |

Substituting this into (20) we have:

B =
-Sign(Xref )

2 Rref 

|VR |

|VX|

┌
│
│
└

|VXZ|2 - |VZ|2 - |VX|2

 |VZ|2 

┐
│
│
┘

[ Siemens ] (9.2)

or

B =
-Sign(Xref )

2 Rref 

|VR |

|VX|

┌
│
│
└

|VXZ|2 - |VX|2

 |VZ|2 
- 1

┐
│
│
┘

4-V method (9.2a)

This requires four voltages, and so will be referred to as the 4-V method for B.

The derivatives for the error function are, once again, trivial; although ∂B/∂|VX| is easier to obtain if
(9.2) is rearranged:

B =
-Sign(Xref )

2 Rref 

|VR |

|VZ|2

┌
│
│
└

|VXZ|2 - |VZ|2

|VX|
- |VX|

┐
│
│
┘

hence, differentiating the two terms with respect to |VX| gives: 

∂B/∂|VX| = 
-Sign(Xref )

2 Rref 

|VR|

|VZ|2

┌
│
│
└

-|VXZ|2 + |VZ|2

|VX|2
- 1

┐
│
│
┘

[ Siemens / volt ]

and multiplying the leading algebraic sign into the bracket gives:

∂B/∂|VX| = 
Sign(Xref )

2 Rref 

|VR|

|VZ|2

┌
│
│
└

|VXZ|2 - |VZ|2

|VX|2
+ 1

┐
│
│
┘

As before, the Sign operator is carried over into all of the derivatives; but since a standard deviation
is a magnitude, we do not need to use the sign when evaluating the error function.  

The formula for susceptance using the 4-V method is thus:
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B = -Sign(Xref ) |VR / VX| UB / ( 2 Rref )

where

UB = [ |VXZ|2 - |VZ|2 - |VX|2 ] / |VZ|2  

(9.2b)
4-V

method

σB4V = √{ (σRref ∂B/∂Rref )2 + (σVR ∂B/∂|VR| )2 + (σVXZ ∂B/∂|VXZ| )2 + (σVZ ∂B/∂|VZ| )2 

                                                                                                           + (σVX ∂B/∂|VX| )2  }

where

∂B/∂Rref = Sign(Xref ) |VR / VX| UB  / ( 2 Rref
2 )

∂B/∂|VR| = -Sign(Xref ) ( 1 / |VX| ) UB / ( 2 Rref )

∂B/∂|VXZ| = - Sign(Xref ) |VR / VX| |VXZ| / ( |VZ|2 Rref )

∂B/∂|VZ| = Sign(Xref ) |VR / VX| ( |VXZ|2 - |VX|2 ) / ( |VZ|3 Rref )

∂B/∂|VX| = Sign(Xref ) |VR| [ 1 + ( |VXZ|2 - |VZ|2 ) / |VX|2 ] / ( 2 |VZ|2 Rref )

(9.2u)

Note that:

|VR / VX| = |VR | / |VX|

An error simulation worksheet for B, comparing the 3-V and 4-V methods, is given in the 
spreadsheet file YZ_scalar_sim.ods (sheet 6).  If the uncertainty in Xref   for the 3-V method is set 
to the value that is obtained by determining Xref   from the voltage measurements, then the two 
methods give very similar results.

The graph on the right shows B vs. X
with 1σ error limits calculated using the
4-V method (σRref = 0.1%, σV = 0.5%).
The error in the region of zero is ±0.25
mS.  Minimum error occurs when Xref 

has the same magnitude as X but the
opposite sign (conjugate reactance
effect).
     When straight percentages are used
for the input errors, the choice of Xref

and Rref   makes no difference to the
simulation.
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Basic macros that perform the B 4-V calculations are below.

Function Scalarvolt_B4V(ByVal signx as integer, Rref as double, VR as double, _
Vxz as double, Vz as double, Vx as double) as double
'Calculates the susceptance B of an admittance using the 4-V method.
'signx is the sign of the reference reactance (-1 for a capacitor used below its SRF)
'Return value is in milli Siemens (mS)
Scalarvolt_B4V  = 1E12
if Vz = 0 then exit function
if Vx = 0 then exit function
if Rref = 0 then exit function
Scalarvolt_B4V = -1000*signx*VR*(Vxz^2 - Vz^2 -Vx^2)/(2*Vx*Vz^2*Rref)
end function

Function SV_sigmaB4V(ByVal Rref as double, sigmaRref as double, sigmaV as double, _
offsetV as double, VR as double, Vxz as double, Vz as double, Vx as double) as double
'Calculates sigmaB using the 4-V method.
'standard deviations are input as percentages and converted into absolute SD
'offsetV is the voltage measurement offset (or zeroing) error, in volts.
'Return value is in milli Siemens (mS)
SV_sigmaB4V = 1E12
if Rref = 0 then exit function
if Vx = 0 then exit function
if Vz = 0 then exit function
SigmaRref = Rref*sigmaRref/100
Dim sigmaVR as double, sigmaVxz as double, sigmaVz as double, sigmaVx as double
sigmaVR = VR*sigmaV/100 + offsetV
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
sigmaVx = Vx*sigmaV/100 + offsetV
Dim UB as double, derRref as double, derVR as double
Dim derVxz as double, derVz as double, derVx as double
UB = (Vxz^2-Vz^2-Vx^2)/Vz^2
derRref = (VR/Vx)*UB/(2*Rref^2)
derVR = -UB/(2*Vx*Rref)
derVxz = -Vxz*(VR/Vx)/(Vz^2*Rref)
derVz = (VR/Vx)*(Vxz^2-Vx^2)/(Vz^3*Rref)
derVx = VR*(1+(Vxz^2-Vz^2)/Vx^2)/(2*Vz^2*Rref)
SV_sigmaB4V = 1000*sqr( (sigmaRref*derRref)^2 +(sigmaVR*derVR)^2 _
+(sigmaVxz*derVxz)^2 +(sigmaVz*derVz)^2 +(sigmaVx*derVx)^2 )
end function
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10.  Power factor 
The power factor of an impedance is the cosine of the phase angle.  Hence :

PF = Cosφ  =  R / |Z|   =  G |Z|   =  R / √( R2 + X2 )   [ Dimensionless ]

Using the analogs in tables 1 and 2, we can obtain it using [ (1) - (2) - (4) ] / [ √(3) × √(4) ] , i.e.:

|VS|2 - |VXZ|2 - |VR|2

|VZ|  |VR|
=

2 R Rref 

√( R2 + X2 ) × Rref

Hence:

PF = ½

┌
│
│
└

|VS|2 - |VXZ|2 - |VR|2

|VZ|  |VR|

┐
│
│
┘

(10.1)

From this expression it can be seen that, for the determination of PF,  a finite voltage is required 
across Rref ,  but it is not necessary to know the actual resistance.  A voltage across Xref  however, is 
not required, and so Xref   can be set to zero if so desired.  When the reference reactance is shorted-
out however, |VXZ| becomes equal to |VZ|, and the error function will need to be modified if the 
same measurement is to be used twice.  We met this issue previously when deriving the error 
function for conductance, and it can be handled in much the same way.

In the matter of deriving the error function, the derivatives for the non-zero reference reactance case
can be had by inspection; except perhaps for ∂PF/∂|VR| ,  which is easier to deduce if (10.1) is 
rearranged:

PF = ½

┌
│
│
└

|VS|2 - |VXZ|2

|VZ|  |VR|
-

|VR|

|VZ|

┐
│
│
┘

Hence:

∂PF/∂|VR| = ½

┌
│
│
└

|VS|2 - |VXZ|2

|VZ|  (-|VR|2 )
-

1

|VZ|

┐
│
│
┘

which, after factoring the (-) sign from the bracket gives:

∂PF/∂|VR| = -½

┌
│
│
└

|VS|2 - |VXZ|2

|VZ|  |VR|2
+

1

|VZ|

┐
│
│
┘

[ Volts-1 ]
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If the reference reactance is zero, and the same voltage is input for both |VXZ| and |VZ|,  then the 
required modification to the error function can be deduced by rewriting (10.1) thus:

PF = ½

┌
│
│
└

|VS|2 - |VZ|2 - |VR|2

|VZ|  |VR|

┐
│
│
┘

when VXZ is replaced by VZ

 
In this case,  ∂PF/∂|VXZ| is zero, and the new version of ∂PF/∂|VZ| is easiest to obtain if we make the
rearrangement:

PF = ½

┌
│
│
└

|VS|2 - |VR|2

|VZ|  |VR|
-

|VZ|

|VR|

┐
│
│
┘

Hence:

∂PF/∂|VZ| = -½

┌
│
│
└

|VS|2 - |VR|2

|VR|  |VZ|2
+

1

|VR|

┐
│
│
┘

when VXZ is replaced by VZ

The complete set of formulae for power factor determination is as follows:

PF = ( |VS|2 - |VXZ|2 - |VR|2 ) / ( 2 |VZ|  |VR| ) (10.1a)

σPF = √{ (σVS ∂PF/∂|VS| )2 +(σVXZ ∂PF/∂|VXZ| )2 +(σVR ∂PF/∂|VR| )2 +(σVZ ∂PF/∂|VZ| )2 }

where

∂PF/∂|VS| = |VS| / ( |VZ|  |VR| )

∂PF/∂|VXZ| = -|VXZ| / ( |VZ|  |VR| )

∂PF/∂|VR| = -[ ( |VS|2 - |VXZ|2 ) / ( 2 |VZ|  |VR|2 ) ] - 1/ ( 2 |VZ| )

∂PF/∂|VZ| = -( |VS|2 - |VXZ|2 - |VR|2 ) / ( 2 |VR|  |VZ|2 )

unless   VXZ ≡ VZ    (i.e., they are the same measurement), in which case:

∂PF/∂|VXZ| = 0

∂PF/∂|VZ| = -[ ( |VS|2 - |VR|2 ) / ( 2 |VR|  |VZ|2 ) ] - 1/ ( 2 |VR| )

(10.1u)

An error simulation is given in the spreadsheet file YZ_scalar_sim.ods (sheet 5).  This is the same 
worksheet as was used for conductance, the two quantities being closely related.  For the same 
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voltage measurement percentage uncertainty, the calculated percentage uncertainty simulation 
results for PF are the same as those for G (see section 8).

Basic macros for the power factor calculations are given below:

Function Scalarvolt_PF(ByVal Vs as double, Vxz as double, VR as double, _
Vz as double) as double
'Calculates the power factor of an impedance using the scalar voltage method.
Scalarvolt_PF  = 0
if Vz = 0 then exit function
if VR = 0 then exit function
Scalarvolt_PF = (Vs^2 -Vxz^2 -VR^2)/(2*Vz*VR)
end function

Function SV_sigmaPF(ByVal sigmaV as double, offsetV as double, Vs as double, _
Vxz as double, VR as double, Vz as double, nox as integer) as double
'Calculates standard deviation of power factor
'Uncertainties are input in % and converted to absolute.
'offsetV is the voltage measurement offset (or zeroing) error, in volts.
'If nox = 1, and Vxz = Vz, assumes that Vxz and Vz are the same measurement.
SV_sigmaPF = 1
If Vz = 0 then exit function
if VR = 0 then exit function
Dim sigmaVs as double, sigmaVxz as double, sigmaVR as double, sigmaVz as double
Dim derVs as double, derVxz as double, derVR as double, derVz as double
'calculate absolute uncertainties: 
sigmaVs = Vs*sigmaV/100 + offsetV
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
'Calculate derivatives
derVs = Vs / (Vz * VR)
derVR = -(Vs^2 -Vxz^2)/(2*Vz*VR^2) -1/(2*Vz)
if Vxz = Vz and nox = 1 then
  derVxz = 0
  derVz = -(Vs^2 -VR^2)/(2*VR*Vz^2) -1/(2*VR)
else
  derVxz = -Vxz / (Vz*VR)
  derVz = -(Vs^2-Vxz^2-VR^2)/(2*VR*Vz^2)
endif
SV_sigmaPF = sqr((sigmaVs*derVs)^2 +(sigmaVxz*derVxz)^2 _
+(sigmaVR*derVR)^2 +(sigmaVz*derVz)^2 )
end function

Note that power factor varies between 0 and 1, and so the maximum possible uncertainty in the 
event of an invalid input is 1.
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11.  Collected formulae 
The formulae that have been derived so far are summarised in the table below.  Where appropriate, 
compact forms are also given using the substitutions:

u = |VXZ|2 - |VZ|2 - |VX|2        and       w = |VS|2 - |VXZ|2 - |VR|2 

section

R
R = (Rref  /2) ( |VS|2 - |VXZ|2 - |VR|2 ) / |VR |2  

R = (Rref  /2) w / |VR |2  
2

X

X = (Xref  /2) ( |VXZ|2 - |VZ|2 - |VX|2 ) / |VX|2 

X = (Xref  /2) u / |VX|2 
3-V method 3

X = Sign() (Rref  /2) ( |VXZ|2 - |VZ|2 - |VX|2 ) / |VR VX|

X = Sign() (Rref  /2) u / |VR VX|
4-V method 5

|Z| |Z| = Rref |VZ| / |VR| 6

Tanφ

X/R = (Rref / Xref ) ( |VXZ|2 - |VZ|2 - |VX|2 ) / ( |VS|2 - |VXZ|2 - |VR|2 )

X/R = (Rref / Xref ) u / w
explicit ref.

7
X/R = Sign() |VR / VX| ( |VXZ|2 - |VZ|2 - |VX|2 ) / ( |VS|2 - |VXZ|2 - |VR|2 )

X/R = Sign() |VR / VX| u / w
implicit ref.

PF Cosφ = ½ ( |VS|2 - |VXZ|2 - |VR|2 ) / | VZ VR| 10

G
G = [ 1/(2 Rref ) ] ( |VS|2 - |VXZ|2 - |VR|2 ) / |VZ|2  

G = [ 1/(2 Rref ) ] w / |VZ|2  
8

B

B = -[ 1/( 2 Xref ) ] ( |VXZ|2 - |VZ|2 - |VX|2 ) /  |VZ|2  

B = -[ 1/( 2 Xref ) ] u /  |VZ|2  
3-V method

9
B = -Sign() [ 1/(2 Rref ) ] |VR / VX| ( |VXZ|2 - |VZ|2 - |VX|2 ) /  |VZ|2  

B = -Sign() [ 1/(2 Rref ) ] |VR / VX| u /  |VZ|2  
4-V method

Symmetry is apparent in the relationship between R and X, and in the relationship between G and 
B, when the reference reactance is used explicitly; but it is less apparent when Xref  is eliminated.  

The quantity Sign() is the numerical representation of the sign of the reference reactance (-1 or +1).

The product or quotient of the magnitudes of two complex numbers is the same as the magnitude of
the product or quotient; so: 
|a| |b| = |a b|       and       |a| / |b|  = |a / b|
These correspondences have been used to de-clutter the equations.



51

12.  Reflection coefficient and SWR 
The ubiquitous SWR meter or SWR bridge does not measure SWR.  It actually indicates a quantity 
known as the voltage reflection coefficient magnitude, which varies between zero, for a perfectly 
matched load, and  1  for a completely mismatched load (open, short, or pure reactance).  This can 
be converted into SWR if, and only if, an electrical quarter wavelength or more of uniform 
transmission line of known characteristic resistance is interposed between the measuring point and 
the load, and if the generator output impedance is equal to the characteristic resistance.  SWR 
readings in HF radio practice are therefore mostly nonsense13, but the practice of replacing the 0 to 
1 scale of the panel-meter with a non-linear SWR scale running from 1 to ∞ persists.  Nominal 
SWR, whether fact or gibberish, is in any case calculated from the reflection coefficient, and so we 
will start by defining the actual measured quantity.

Voltage reflection coefficient is the ratio of the amplitude of the wave reflected from the load  to the
amplitude of the wave absorbed by the load, as inferred relative to a specified characteristic 
resistance.  A conventional in-line reflectometer measures the relative amplitudes of the forward and
reverse travelling waves on a transmission line by taking voltage samples from one, or sometimes 
two, potential dividers (or voltage transformers) placed across the line, and current samples from a 
current transformer placed in series with the line.  It is convenient to call the voltage from the 
potential divider Vv ,  and the voltage from the current transformer Vi .  Both of these quantities are 
phasors, and the sampling networks are engineered to preserve the relative phase information in the 
transmission-line voltage and current at the measuring point.  The voltages are also scaled by choice
of circuit parameters so that, when the load impedance Z is the same as the line characteric 
resistance R0 ,  Vv = Vi .  When these conditions are met,  Vv - Vi  is proportional to the reflected 
wave amplitude, and Vv + Vi is proportional to the forward wave amplitude.  The current 
transformer also has the convenient property that it can provide outputs that float relative to ground,
and so vector addition can be performed simply by placing a current sample in series with a voltage 
sample, series aiding for the forward voltage, and in series opposition for the reflected voltage.  The
ratio of the reflected and forward voltages is the voltage reflection coefficient, Γ (Gamma).  When 
we rectifiy the two voltage sums however, we lose the phase information, and so we measure the 
quantity |Γ| (the VRC magnitude).  Thus:

|Γ| = |Vrev / Vfwd| = |Vrev| / |Vfwd| = |Vv - Vi | / |Vv + Vi |  (12.1)

Note that constants of proportionality vanish by cancellation because we are dealing with ratios.  
Also, although it is perfectly feasible to measure these voltages and compute the ratio (and hence 
the SWR if so desired); the common practice in low-cost instruments is to provide a sensitivity 
control and two (nominally) identically calibrated panel meters, one showing  |Vv - Vi |  and the 
other showing  |Vv + Vi | .  If the sensitivity is adjusted until the |Vv + Vi | reading is 1, then the other 
meter reads the reflection coefficient on a linear scale from 0 to 1 (neglecting diode non-linearity).  
The VSWR14, incidentally, is given by:

S = ( 1 + |Γ| ) / ( 1 - |Γ| )

and this formula is used to determine the panel-meter scale engraving of an SWR bridge.

A bridge however, is an impedance measuring device.  It does not need to meet any preconditions 
relating to transmission lines in order to produce a valid result.  It can also be used as a generalised 

13 Particularly when an SWR meter is used at the input to an antenna matching unit, and ludicrously so when the SWR 
meter is actually built-in to the AMU.

14 Voltage Standing-Wave Ratio, so called to distinguish it from power SWR.  Voltage and current SWR are the same.
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analog computer for impedance and admittance attributes, because it has the property that  if one of 
the samples is defined as an analog, the other becomes the corresponding analog of the reference 
impedance.  In the case of the reflection coefficient bridge, the reference impedance is R0 , the target
load resistance or transmission-line surge resistance, which has been built into the balance condition
by choice of circuit parameters.  In that case, Vv becomes the analog of Z (the actual load 
impedance) and Vi  becomes the analog of R0 .  Substituting the analogs into (12.1) we get:

|Γ| = |Z - R0| / |Z + R0|  (12.2)

This relationship, incidentally, is well known and can be derived in numerous ways15 16 17.

So, now we have an expression for |Γ| in terms of quantities that can be measured by the discrete 
scalar voltage method; although, as we will soon discover, this will only work when Rref = R0 .  The 
possibility of using this approach however, raises the question: 'why don't antenna analysers do it 
that way?'  We can, of course, answer that question by comparing the scalar method with the 
conventional bridge method. 

When using the scalar voltage method, we will work with the square of the VRC magnitude.  This 
will dispense with the proliferation of square-root symbols that occurs when dealing with 
magnitudes.  Also, the quantity |Γ|2  has a name; it is the power reflection coefficient magnitude 
(PRC).   Thus, squaring and expanding (12.2) we get:

|Γ|2 = [ ( R - R0 )2 + X2 ] / [ ( R + R0 )2 + X2 ] (12.3)

Now, examining tables 2 and 3, we can see that an expression in the same form as the numerator of 
(12.3) is obtained from: (3) + (4) - [ (1) - (2) - (4) ] ;  i.e.; (2) + (3) + 2×(4) - (1) .

|VXZ|2 + |VZ|2 + 2 |VR|2  - |VS|2 = |I|2 [ R2 + X2 + Rref
2 - 2 R Rref ] =  |I|2 [ ( R - Rref )2 + X2 ]

and an expression in the form of the denominator is obtained from: (1) - (5) - [ (2) - (3) - (5) ] ;  i.e.;
(1) + (3) - (2) .

|VS|2 +  |VZ|2 - |VXZ|2 = |I|2 [ ( R + Rref  )2 + X2 ]

Hence, if we put Rref = R0  ;

|Γ|2 = 
|VXZ|2 + |VZ|2 + 2 |VR|2  - |VS|2

|VS|2 +  |VZ|2 - |VXZ|2 
(12.4)

So far, interestingly, we are at liberty to retain a non-zero value for Xref ,  but the expression is 
rendered somewhat complicated by that choice.  If we put  Xref  = 0 ,  then  VXZ = VZ , and a 
simplification occurs:

15 See, for example: Transmission Lines for Digital and Communication Networks, R E Matick, McGraw-Hill 
1969. LCCN: 68-30561.  Section 2.9, Reflection Coefficient, p43-46.

16 A good discussion is given in: Return Loss, Thomas Roddam, Wireless World. Nov. 1957, p521-524, Dec. 1957, 
p583-588.

17 A summary is given in: Electronic Measurements, F E Terman and J M Petit, 2nd Edition, McGraw-Hill 1952, 
LCCN 51-12650.  Section 4.3, Voltage and Current Relations, Reflection Coefficient and SWR. p125-128.
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|Γ|2 = 
2 |VZ|2 + 2 |VR|2  - |VS|2

|VS|2
when Xref = 0 (12.5)

or, alternatively:

|Γ|2 = 
2 ( |VZ|2 + |VR|2 )

|VS|2
- 1 when Xref = 0 (12.5a)

PRC error function 
An error function for the power reflection coefficient can be written by inspection of equation 
(12.4).  Four voltage measurements are required when Xref  ≠ 0, and so:

σPRC = √{ ((σVXZ ∂|Γ|2/∂|VXZ| )2 + (σVZ ∂|Γ|2/∂|VZ| )2 + (σVR ∂|Γ|2/∂|VR| )2 + (σVS ∂|Γ|2/∂|VS| )2 }

To facilitate differentiation we will write (12.4). as:

|Γ|2 = α / β

where:   

α = |VXZ|2 + |VZ|2 + 2 |VR|2  - |VS|2       

and       

β = |VS|2 +  |VZ|2 - |VXZ|2      

and the following combinations will be found useful:

α + β = 2 ( |VZ|2 + |VR|2 )

β - α = |VS|2 - |VXZ|2 - |VR|2   = w 

(In previous sections we allocated the letter w to this last quantity)

Differentiation can be accomplished using the quotient rule, i.e.;

d(α/β)/dv =  ( β dα/dv -  α dβ/dv ) / β2     

Hence:

∂|Γ|2/∂|VXZ| = { β 2 |VXZ| - α ( -2 |VXZ| ) } / β2  

                    = 2 |VXZ| ( α + β ) / β2 

∂|Γ|2/∂|VXZ| = 4 |VXZ| ( |VZ|2 + |VR|2 ) / β2  [ volts-1 ] (12.4-d1)
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∂|Γ|2/∂|VZ| = { β 2 |VZ| - α 2 |VZ| ) } / β2  

                 = 2 |VZ| ( β - α ) / β2  

∂|Γ|2/∂|VZ| = 4 |VZ| ( |VS|2 - |VXZ|2 - |VR|2  ) / β2  [ volts-1 ] (12.4-d2)

∂|Γ|2/∂|VR| = 4 |VR| / β [ volts-1 ] (12.4-d3)

and

∂|Γ|2/∂|VS| = { β (-2 |VS| - α 2 |VS| ) } / β2 

                 = -2 |VS| ( α + β ) / β2 

∂|Γ|2/∂|VS| =  -4 |VS| ( |VZ|2 + |VR|2 ) / β2  [ volts-1 ] (12.4-d4)

If  Xref = 0  however, and |VXZ| and |VZ| are both the same measurement, then we have the somewhat
more straightforward task of differentiating equation (12.5a):

∂|Γ|2/∂|VXZ| = 0  (12.5-d1)

∂|Γ|2/∂|VZ| = 4 |VZ| / |VS|2  (12.5-d2)

∂|Γ|2/∂|VR| = 4 |VR| / |VS|2  (12.5-d3)

∂|Γ|2/∂|VS| = -4 ( |VZ|2 + |VR|2 ) / |VS|3     (12.5-d4)

In the calculation routines for the standard deviations of conductance and power factor however, we
used an input flag (nox) to tell the program when the same measurement was being used for both 
|VXZ| and |VZ| should they happen to be the same.  Therefore it is useful to know which of the 
derivatives above is analytically different from the  Xref  ≠ 0  case.  Obviously,  ∂|Γ|2/∂|VXZ|  has 
vanished, but it might not be so clear which of the others will give the correct value if computed as 
for Xref  ≠ 0  and which need to be handled by a program branch.  Note therefore that when 
VXZ ≡ VZ ;

α → 2 ( |VZ|2 + |VR|2 ) - |VS|2       and       β → |VS|2     

It should then be clear that ∂|Γ|2/∂|VZ| requires separate evaluation (compare 12.4-d2 with 12.5-d2), 
but the remaining two derivatives (d3 and d4) do not.
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OO Basic macros for the power reflection coefficient calculations are given below:

Function Scalarvolt_PRC(ByVal Vxz as double, Vz as double, _
VR as double, Vs as double) as double
'Calculates the magnitude of the power reflection coeff.
'Take the square root of the returned value to get the Voltage refl. coeff. magn.
Dim beta as double
beta = Vs^2 + Vz^2 -Vxz^2
Scalarvolt_PRC = 1
if beta = 0 then exit function
Scalarvolt_PRC = ( Vxz^2 +Vz^2 +2*VR^2 -Vs^2 )/beta
end function

Function SV_sigmaPRC(sigmaV as double, offsetV as double, Vxz as double, _
Vz as double, VR as double, Vs as double, nox as integer) as double
'Calculates SD of power refl. coeff.
'sigmaV is voltage scale error in percent. OffsetV is voltage offset error in Volts.
'returns an absolute SD. 
'if Vxz = Vz and nox = 1, assumes Vxz and Vz are the same measurement.
Dim alpha as double, beta as double
beta = Vs^2 + Vz^2 -Vxz^2
SV_sigmaPRC = 1
if beta = 0 then exit function
alpha = Vxz^2 +Vz^2 +2*VR^2 -Vs^2
Dim sigmaVxz as double, sigmaVz as double, sigmaVR as double, sigmaVs as double
sigmaVxz = Vxz*sigmaV/100 + offsetV
sigmaVz = Vz*sigmaV/100 + offsetV
sigmaVR = VR*sigmaV/100 + offsetV
sigmaVs = Vs*sigmaV/100 + offsetV
Dim derVxz as double, derVz as double, derVR as double, derVs as double
if Vxz = Vz and nox = 1 then
  derVxz = 0
  derVz = 4*VR/Vs^2
else
  derVxz = 4*Vxz*(Vz^2 +VR^2)/beta^2
  derVz = 4*Vz*(Vs^2 -Vxz^2 -VR^2)/beta^2
endif
derVR = 4*VR/beta
derVs = -4*Vs*(Vz^2 + VR^2)/beta^2
SV_sigmaPRC = sqr( (sigmaVxz*derVxz)^2 +(sigmaVz*derVz)^2 +(sigmaVR*derVR)^2 _
+(sigmaVs*derVs)^2 )
end function
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12a. Error function for the voltage reflection coefficient  
The scalar voltage method of equation (12.4) gives us the power reflection coefficient magnitude, 
and the corresponding error function gives us its standard deviation.  The PRC magnitude can be 
converted into the voltage reflection coefficient (VRC) magnitude by the simple expedient of taking
the square root, and other calculations such as VSWR and return loss18 can follow.  Unfortunately 
however, the process of converting the PRC uncertainty into a VRC uncertainty is not so 
straightforward.
     When two quantities are related by a simple transformation, the uncertainty in one can usually be
related to the uncertainty in the other using the rate of change, i.e.;

if     y = f(x)      then     σy = σx dy/dx

What this statement says is: ' the uncertainty in y is the rate of change of y with respect to x 
multiplied by the uncertainty in x '.  This is the standard rule for propagation of errors, but it will 
fail if the function is not differentiable, or if the uncertainty is large in comparison to the derivative. 
We can see the problem in this case when we differentiate the VRC with respect to the PRC:

|Γ| = √|Γ2| = |Γ2|1/2  

Thus:

d|Γ|/d|Γ2| = ½ |Γ2|-1/2  = 1 / (2 √|Γ2| ) = 1 / ( 2 |Γ| )

This gives:

σVRC = σPRC / ( 2 |Γ| )

According to this expression, σVRC  becomes very large when |Γ| is close to zero, and goes to 
infinity when |Γ| = 0 .  This apparent indeterminacy is however false.  It arises because the transfer 
function is not differentiable over the complete range of interest.  This is the same as saying that 
there is no continuous analytical form for the error function.  The expression above is not 
completely useless because it will work when  |Γ| >> 0 , but for  |Γ| ≈ 0  it explodes.
     A question that might now spring to mind is: 'what happens if we write a formula for |Γ| 
explicitly and construct an error function by differentiating it with respect to each of the input 
voltages?'  The required expression, obtained by taking the square root of (12.4), is shown below: 

|Γ| = √
┌
│
│
└

|VXZ|2 + |VZ|2 + 2 |VR|2  - |VS|2

|VS|2 +  |VZ|2 - |VXZ|2 

┐
│
│
┘

(12.4a)

It is also the case, incidentally, that both the numerator and denominator of this equation are always 
positive for valid input, and so they can be separated without becoming complex:

|Γ| = 
√{ |VXZ|2 + |VZ|2 + 2 |VR|2  - |VS|2 }

√{ |VS|2 +  |VZ|2 - |VXZ|2 }
(12.4b)

This can be differentiated fairly easily using the quotient rule and the chain (function of a function) 

18 Return loss is the reciprocal of the VRC magnitude expressed in dB.
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rule, but there is still a problem.  The numerator of (12.4b) goes to zero when |Γ| → 0.  Also due to 
the application of the chain rule and the fact that d(x1/2 )/dx = ½x-1/2,  the numerator ends up in the 
denominator of every derivative, and all of the derivatives explode when |Γ| → 0 .  What has 
happened is that we have merely derived the same error function as before, but by a much more 
long-winded method.  The problem needs to be attacked in a completely different way.
     A generally effective approach to statistical problems that have no analytical solution is the so-
called 'Monte Carlo method'.  What the term implies depends on the type of problem, but in this 
case we can understand it to mean; 'adding noise to the inputs and plotting the distribution of output
results after numerous repeated calculations'.  Examining the expression for |Γ| given above as 
(12.4a), it should be obvious that if we were to add Gaussian (i.e., normally distributed, random) 
noise to each of the input voltages, with a half-width equal to the standard deviation in each case; 
then, after a large number of trial calculations, the output results would be scattered in the 
approximate form of a normal distribution, with a half-width equal to the desired σVRC .
     Monte Carlo methods however are computationally intensive, and are usually applied to 
problems that are much more complicated than this.  For the present application, we can obtain an 
approximation for σVRC by using a related but extremely abbreviated method.  We can simply move 
each of the four input voltages independently to the upper and lower half-width points of their error 
distributions, record the average output perturbation magnitude in each case and then add the 
perturbations orthogonally.  In other words, we can use the incremental method described in section
7e.  
     A Basic macro program for calculating  σVRC  is given below.  It uses both the incremental and 
the derivative methods and accepts the smaller of the two results. The accuracy of the scalar voltage
method for |VRC| is discussed at the end of the next section.

Function SV_sigmaVRC(sigmaV as double, offsetV as double, Vxz as double, _
Vz as double, VR as double, Vs as double, nox as integer) as double
'Calculates SD of voltage refl. coeff.  Calls the function Scalarvolt_VRC(). 
'sigmaV is voltage scale error in percent. OffsetV is voltage offset error in Volts.
'Returns an absolute SD. 
'if Vxz = Vz and nox = 1, assumes Vxz and Vz are the same measurement.
Dim uVxz as double, uVz as double, uVR as double, uVs as double
'calculate the absolute voltage standard deviations
uVxz = Vxz*sigmaV/100 + offsetV
uVz = Vz*sigmaV/100 + offsetV
uVR = VR*sigmaV/100 + offsetV
uVs = Vs*sigmaV/100 + offsetV
'check that no /0 errors will occur.  Max. poss. uncertainty of VRC is 1.
SV_sigmaVRC = 1
if Vs = 0 then exit function
if (Vs+uVs)^2 +vz^2 +Vxz^2 = 0 then exit function
if (Vs-uVs)^2 +vz^2 +Vxz^2 = 0 then exit function
if Vs^2 +(Vz+uVz)^2 +Vxz^2 = 0 then exit function
if Vs^2 +(Vz-uVz)^2 +Vxz^2 = 0 then exit function
if Vs^2 +Vz^2 +(Vxz+uVxz)^2 = 0 then exit function
if Vs^2 +Vz^2 +(Vxz-uVxz)^2 = 0 then exit function
'Calculate the error contributions numerically using the function Scalarvolt_VRC().
Dim DVxz as double, DVz as double, DVR as double, DVs as double, sdnVRC as double
if Vxz = Vz and nox = 1 then
  DVxz = 0
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  DVz = ( Scalarvolt_VRC(Vz+uVz, Vz+uVz, VR, Vs) _
  - Scalarvolt_VRC(Vz-uVz, Vz-uVz, VR, Vs) )/2
else
  DVxz = (Scalarvolt_VRC(Vxz+uVxz, Vz, VR, Vs)-Scalarvolt_VRC(Vxz-uVxz, Vz, VR, Vs))/2
  DVz = (Scalarvolt_VRC(Vxz, Vz+uVz, VR, Vs)-Scalarvolt_VRC(Vxz, Vz-uVz, VR, Vs))/2
end if
DVR = (Scalarvolt_VRC(Vxz, Vz, VR+uVR, Vs)-Scalarvolt_VRC(Vxz, Vz, VR-uVR, Vs))/2
DVs = (Scalarvolt_VRC(Vxz, Vz, VR, Vs+uVs)-Scalarvolt_VRC(Vxz, Vz, VR, Vs-uVs))/2
'Calculate the numerical SD and set the function value to equal it.
sdnVRC = sqr(DVxz^2 + DVz^2 + DVR^2 + DVs^2)
SV_sigmaVRC = sdnVRC
'Calculate VRC (Gamma) and exit if it is zero or complex (i.e., acccept the numerical SD)
Dim alfa as double, beta as double, Gamma as double
alfa = Vxz^2 +Vz^2 +2*VR^2 -Vs^2
beta = Vs^2 +Vz^2 -Vxz^2
if alfa <= 0 then exit function
if beta <= 0 then exit function
Gamma = sqr(alfa/beta)
'Calculate the analytical SD.  Routine is the same as for the PRC SD, with conversion at the end.
Dim derVxz as double, derVz as double, derVR as double, derVs as double
if Vxz = Vz and nox = 1 then
  derVxz = 0
  derVz = 4*VR/Vs^2
else
  derVxz = 4*Vxz*(Vz^2 +VR^2)/beta^2
  derVz = 4*Vz*(Vs^2 -Vxz^2 -VR^2)/beta^2
endif
derVR = 4*VR/beta
derVs = -4*Vs*(Vz^2 + VR^2)/beta^2
Dim sdPRC as double, sdVRC as double
sdPRC = sqr( (uVxz*derVxz)^2 +(uVz*derVz)^2 +(uVR*derVR)^2 +(uVs*derVs)^2 )
sdVRC = sdPRC /(2*Gamma)
'If the analytical SD is smaller than the numerical SD, accept the analytical value.
if sdVRC < sdnVRC then SV_sigmaVRC = sdVRC
end function

Function Scalarvolt_VRC(ByVal Vxz as double, Vz as double, VR as double, _
Vs as double) as double
'Calculates the magnitude of the voltage reflection coeff.
Dim alfa as double, beta as double
Scalarvolt_VRC = 1
beta = Vs^2 +Vz^2 -Vxz^2
if beta <= 0 then exit function
alfa = Vxz^2 +Vz^2 +2*VR^2 -Vs^2
if alfa < 0 then exit function
Scalarvolt_VRC = sqr(alfa/beta)
end function
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12b. Bridge method for voltage reflection coefficient 
As we will see when we come to discuss practical circuits, it is necessary to place a resistive load 
directly across the generator in order to guarantee a DC return for the floating shunt-diode detectors 
(i.e., the ones that measure |VR| and |VX| ).  Since this additional resistance is mandatory, there is 
little overhead in making it from two resistors in series.  We can then add a further voltage 
measurement to the existing set, and by so doing obtain a straightforward method for measuring the 
voltage reflection coefficient.
     The modified arrangement is shown below.  The voltage of interest is labelled VB , where the 
subscript stands for 'bridge'.  VB   is the difference between the quantity VS /m  and the voltage VZ  
appearing across the test impedance, i.e.;

VB  = ( VS /m ) - VZ (12.6)

Where VS is the generator voltage, and m is the inverse
of the potential divider ratio, i.e.;

m = ( R1 + R2 ) / R1  = 1 + R2 / R1  

Now note that:

VS = I ( Z + Zref ) 

where:

Zref  = Rref + jXref 

and also

VZ = I Z  

i.e.:

VZ = VS Z / ( Z + Zref ) 

Substituting this into (12.6) gives:

VB  = VS

┌
│
│
└

1

m
-

Z

Z + Zref 

┐
│
│
┘

Putting the terms onto a common denominator then gives:

VB  =
VS

m

┌
│
│
└

Z + Zref  - m Z

Z + Zref 

┐
│
│
┘

Which can be rearranged as follows:
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VB  =
VS

m

┌
│
│
└

Zref  - (m-1) Z

Zref  + Z

┐
│
│
┘

Now, by the simple expedient of setting  m = 2  we get:

VB  =
VS

2

┌
│
│
└

Zref  - Z

Zref  + Z

┐
│
│
┘

And if we set  Xref = 0  and  Rref = R0 :

VB  =
VS

2

┌
│
│
└

R0 - Z

R0 + Z

┐
│
│
┘

The quantity in square brackets, but for a change of sign, is of course the voltage reflection 
coefficient.  Hence:

|Γ| = 2 |VB / VS| = 2 |VB| / |VS| (12.7)

When the reference reactance can be set to zero, the bridge voltage provides a simple way of 
obtaining the VRC magnitude.  Calculating a standard deviation for a measurement obtained in this 
way however requires a little thought.  It would appear from the expression above, that the 
uncertainty depends only on the uncertainties in |VB| and |VS| , but that is not the case.  
     Some readers might have wondered why the parameter m was introduced earlier, when it is 
obvious that its value must be 2.  The answer is that, although we want it to be 2, it is actually 
determined by the resistors R1 and R2 , which are only nominally identical.  Hence, for the purpose 
of obtaining the error function, we must rewrite equation (12.7) thus:

|Γ| =  m |VB| / |VS| (12.8)

i.e.;

|Γ| = ( 1 + R2 / R1 ) |VB| / |VS|

The error function is then:

σVRC = √{ (σR1 ∂|Γ|/∂R1 )2 + (σR2 ∂|Γ|/∂R2 )2 + (σVB ∂|Γ|/∂|VB| )2 + (σVS ∂|Γ|/∂|VS| )2 }

where:

∂|Γ|/∂R1 = -( R2 / R1
2
 ) |VB| / |VS| [Siemens]

∂|Γ|/∂R2 = ( 1 / R1 ) |VB| / |VS| [Siemens]

∂|Γ|/∂|VB| = m / |VS| [ volts-1 ]
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and

∂|Γ|/∂|VS| = -m |VB| / |VS|2   [ volts-1 ]

For the derivatives of |Γ| with respect to the voltages, we are at liberty to put 
m = (1 + R2 / R1 ) = 2  if so desired.  Sticking to the value computed from the resistances however 
makes the method more general; i.e., if some other more obscure quantity having m ≠ 2 is required, 
the the routine will still calculate its SD.

In constructing the network, of course, it will be sensible to use two resistors of the same type, and 
either match them or pick them from the same batch.  In that case, both resistances will have the 
same standard deviation and the error function becomes:

σVRC = √{ ((σR ∂|Γ|/∂R1 )2 + (σR ∂|Γ|/∂R2 )2 + (σVB ∂|Γ|/∂|VB| )2 + (σVS ∂|Γ|/∂|VS| )2 }

A Basic calculation routine for σVRC for the bridge method is given below.  Note that it calculates an
uncertainty for equation (12.8) for any value of m, even though the quantity calculated using (12.8) 
is only the VRC magnitude when R1 = R2 ,  Rref = R0  and  Xref = 0.

Function BV_sigmaVRC(sigmaR as double, R1 as double, R2 as double, _
sigmaV as double, offsetV as double, VB as double, Vs as double) as double
'calculates SD of voltage reflection coeff. as determined from bridge measurement.
'sigmaR is in percent. R1 and R2 in Ohms.
'sigmaV is voltage scale error in percent. OffsetV is voltage offset error in Volts.
BV_sigmaVRC = 1
if Vs = 0 then exit function
Dim sigmaR1 as double, sigmaR2 as double, sigmaVB as double, sigmaVs as double
sigmaR1 = sigmaR*R1/100
sigmaR2 = sigmaR*R2/100
sigmaVB = VB*sigmaV/100 + offsetV
sigmaVs = Vs*sigmaV/100 + offsetV
Dim m as double, derR1 as double, derR2 as double, derVB as double, derVs as double
m = (R1+R2)/R1
derR1 = -(R2/R1^2)*VB/Vs
derR2 = (1/R1)*VB/Vs
derVB = m/Vs
derVs = -m*VB/Vs^2
BV_sigmaVRC = sqr( (sigmaR1*derR1)^2 +(sigmaR2*derR2)^2 _
+(sigmaVB*derVB)^2 + (sigmaVs*derVs)^2 )
end function
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12c. Reflectometry error simulation and discussion 
A simulation worksheet for the reflection coefficient calculation methods discussed is given in the 
spreadsheet file YZ_scalar_sim.ods (sheet 7).

The graph below shows the reflection coefficient for an impedance of 50 +jX Ω,  as X varies from 
-200 Ω  to + 200 Ω.  The target impedance is 50 +j0 Ω.  Above and below the principal curve are 
the ±1σ error limits for both the scalar voltage method (section 12a) and the bridge method (section 
12b).  Since comparison of the two methods demands that Xref = 0,  the same measurement was 
used for |VXZ| and |VZ|  (i.e., the flag ' nox ' was set to 1 for the scalar method error calculation).

The scalar method will always give results that are inferior to the bridge method, because it has to 
combine more voltage measurements than the bridge method in order to overcome the lack of a 
facility for vector addition.  When |VXZ| and |VZ| are the same however, only three voltages are used,
and the accuracy is only a little worse than the bridge method when |Γ| is large.  Despite the 
measures taken to prevent the error function from exploding however (see section 12a), The 
reflection coefficient uncertainty is still poorly determined when the coefficient is small.  This does 
not mean that the value of |Γ| obtained will be seriously inaccurate however, it just means that we 
cannot tell how accurate it is using simple mathematical or computational techniques.
     The advantage of the scalar voltage method is that it will work when Xref  is not zero.  This 
means that it is possible to make a simultaneous determination of |Γ| and all of the other impedance 
and admittance attributes discussed in this article.  Note however, that a necessary condition is that 
Rref = R0 ,  whereas most of the measurements that can be carried out have flatter error curves when 
Rref   is somewhat larger than the resistive component of the impedance under test (Z).  Hence, best 
accuracy will always be obtained if the reference configuration is adjusted specifically for the |Γ| 
measurement.  If that is to be done however, and particularly since it will be necessary to place a 
resistance across the generator; we might as well extend the circuit to include the potential divider 
and the bridge voltage detector.
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12d. VSWR calculation 
As was mentioned earlier, the voltage (or current) standing wave ratio on a transmission line of 
characteristic resistance R0 and of length greater than λ/4 (electrical) is given by:

S = (1 + |Γ| ) / (1 - |Γ| )

where |Γ| is the voltage reflection coefficient (VRC) magnitude.  Thus the accuracy of an SWR 
determination, assuming that the necessary measurement conditions are met, is:

σS = σΓ dS/d|Γ|

(where σΓ  is just another way of writing σVRC ).  This expression, of course, assumes that S is 
differentiable in the region of interest.  To differentiate S, we can use the quotient rule, which gives:

dS/d|Γ| = ( 1 - |Γ| + 1 + |Γ| ) / (1 - |Γ| )2 

i.e.,

dS/d|Γ| = 2 / ( 1 - |Γ| )2

This derivative explodes when  |Γ| → 1 ,  i.e., when the transmission line is badly mismatched, but 
since  S → ∞  when that happens, this is simply a statement to the effect that the absolute 
uncertainty in S will be large when S is large.  The derivative moreover, is perfectly well behaved as
|Γ| → 0 ,  which means that we have a viable formula for the standard deviation of a VSWR 
measurement: 

σS = 2 σΓ / ( 1 - |Γ| )2

The only caveat regarding this formula, is that it requires a value of |Γ| from a method that produces
a well determined standard deviation in the region of  |Γ| = 0 .  This, of course, is another reason for 
using the bridge method.  
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13.  Notes on sections yet to be written 
----------------------------------------------------------------

13.  Detectors and linearising circuits

High impedance shunt diode detectors

Why it is difficult to swap the positions of Rref and Xref .  Gen. is terminated in resistor that provides 
the dc return for VR and VX.  If we swap them round, we have no guaranteed dc return for VR .

Must be no DC paths between RF ports and diode circuits - prevents accidental DC injection.  
RF isolation issues.

Linearisation circuits:
Simple op-amp compensators, inverting and non inverting.  Use of bias (?).
Sasaki-Jensen peak detector.
Tracking detectors.
[will probably move this into a general article on detectors and then simply refer to it].

Voltage magnification -  need to find the highest voltage in the set for adjusting gen. level (ALC / 
AGC)

----------------------------------------

14. Constant reference reactance 
Quasi-constant ref. reactance can be achieved by servoing |Xref | to be some multiple of Rref   (such as
1× or  4×). 
Capacitor model with series partial inductance.  
 A 2×500 pF broadcast variable capacitor with switched 1000 pF in parallel covers 6 octaves (HF 
and low VHF) at X = -50 Ω .

15. Analog computers
Use of log amps and / or 4-quadrant multipliers to do the calculations.  
Complicated & somewhat expensive.

16.  Microcontroller.
A-D conversion, 
Built in 10-bit with multi-channel mux in the easy to use types.  >0.1% offset error.
Built in USART for taking data from external 12-bit A-D.

17.  Match meter  R, G and Tanφ
For 50 Ω system:
R measurement (section 2a) → best acuracy when Rref ≥ 200  Ω .  |Xref| ≤ 50  Ω is acceptable.
G measurement (section 8a) → best acuracy when Rref ≥ 200  Ω .  |Xref| ≤ 50 Ω is acceptable.
Tanφ measurement (section 7c) → best acuracy when Rref ≥ 200  Ω . Xref = -50 Ω works well.

█


